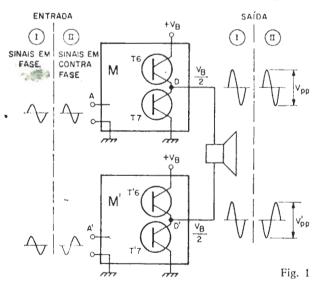


ÁUDIO AMPLIFICADOR DE 250 W COM TRANSISTORES DE SILÍCIO

FOX ELETRONICH.

O aparelho apresentado neste folheto vem estender considerávelmente a faixa de potência dos amplificadores transistorizados,


Apesar de ser indicado para sonorização de grandes ambientes — salões de baile, auditórios, estúdios — as suas características de distorção e resposta de freqüência são comparáveis às dos melhores aparelhos de alta fidelidade.

PRINCÍPIO DE FUNCIONAMENTO

1

Para o projeto dêste amplificador foi utilizado o circuito tipo ponte, em virtude das vantagens que êste apresenta quando utilizado com transistores.

O princípio de funcionamento do circuito ponte poderá ser compreendido com auxílio da figura J. M e M' são dois amplificadores de potência, com características elétricas idênticas. A carga (alto-falante) está ligada entre os pontos

centrais D e D' dos estágios de saída.

Em condições de repouso, ambos os terminais da carga estarão no mesmo potencial, que é a metade da tensão da fonte.

Quando forem injetados dois sinais de iguais amplitudes e mesma fase nas entradas dos amplificadores, os sinais de saída serão idênticos em fase e amplitude. Ambos os terminais da carga possuirão o mesmo potencial instantâneo; portanto a diferença de tensão entre os terminais D e D' permanece igual a zero e nenhuma potência será entregue à carga. Em outras palavras, esta eonfiguração apresenta alta imunidade (rejeição) aos sinais de "modo comum".

. Esta vantagem não se restringe aos sinais de entrada. Qualquer tipo de interferência que influa igualmente nos dois canais será eliminado ou atenuado na carga. Assim, o ronco da fonte que penetra pela linha de alimentação, também será suprimido na carga.

Quando os sinais aplicados em M e M' forem iguais e com fases opostas, as tensões instantâneas das saídas também estarão defasadas em 180°; portanto quando D atingir o pico positivo de sua excursão, D' estará no pico negativo. A tensão pico a pico aplicada à carga corresponde à diferença entre as tensões D e D', isto é:

Uma vez que o sinal em D' é idêntico ao sinal em D, podemos considerá-lo como o negativo dêste. Logo: $V_{carga(pp)} = V_{pp} - (-V_{pp}) = 2 V_{pp}$

Evidencia-se então que uma das vantagens do circuito ponte é de proporcionar o dôbro da excursão que seria possível obter com um circuito push-pull tipo quase-complementar. Isto significa uma potência na carga 4 vêzes maior, considerando que a tensão de alimentação permaneça a mesma.

1 1

CARACTERISTICAS			
Potência de saída	250 W	Consumo sem sinal	120 mA
— Impedância de carga nominal	$6[\Omega]$	— Consumo para 250 W (6 Ω)	6 A
— Sensibilidade para 250 W (1 kHz) 400 mV	Distorção :	
Impedância de entrada	$60~\mathrm{k}\Omega$	a 200 W (1 kHz)	0,2%
— Tensão de alimentação CC	65 V	a 250 W (1 kHz)	1,4%

DESCRIÇÃO DO CIRCUITO

O esquema completo do amplificador está ilustrado na figura 2. Pode-se considerá-lo como constituído por dois amplificadores e um inversor de fase.

O sinal de entrada, injetado entre os terminais A e B, será aplicado simultâneamente à entrada do amplificador M e à base de T₈. Em virtude da forte realimentação negativa introduzida pelo resistor de emissor R₂₁, o sinal de coletor apresenta amplitude idêntica ao de base, porém com polaridade oposta. Esse sinal é aplicado à entrada do amplificador M', sendo daí por diante, processado por êste de modo idêntico ao de M.

O transistor T_1 (bem como T_1) funciona como amplificador de tensão e conversor de impe-

dâncias. T_2 é o transistor excitador. Utilizou-se nesta função um BD115, trabalhando com uma corrente de repouso de 22 mA. O sinal de coletor de T_2 é aplicado diretamente à base de T_5 e, por intermédio de T_3 , à base de T_4 . Os transistores T_5 e T_4 são complementares, operando como inversores de fase e excitadores do estágio de saída T_6/T_7 .

O capacitor C₈ em série com R₁₃ fornece realimentação negativa de C.A. A estabilização em C.C. é obtida mediante o resistor R₈ que vai ligado ao emissor de T₁. O capacitor C₃ em paralelo com o resistor mencionado, limita a resposta de freqüência e evita o aparecimento de oscilações parasitas. Idêntica função tem C₆, ligado entre base e coletor de T₂.

A função do transistor T_3 e do potenciômetro R_9 é fixar o ponto de trabalho dos transistores

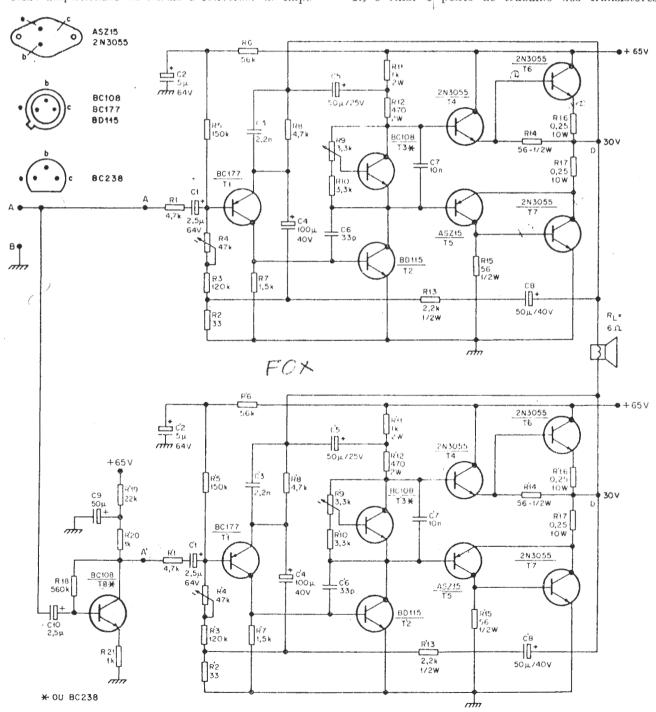
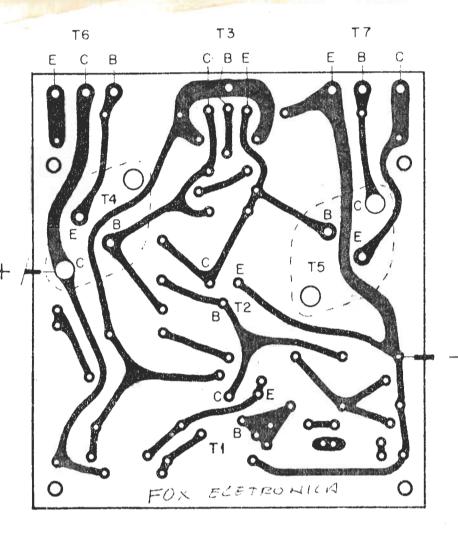



Fig. 2

 T_4 e T_5 , determinando assim a corrente quiescente do estágio de saída. O transistor T_3 está em contato térmico com os transistores de saída, a fim de estabilizar o ponto de trabalho de T_6 e T_7 em

tôdas as temperaturas de funcionamento.

O potenciômetro R₄ é usado para ajustar a tensão do ponto médio do estágio de saída, que deverá ser igual ao valor indicado no esquema.

DISSIPADORES

Estágio de saída:

T₆ e T₇ - área 250 cm² (chapa de alumínio de 3 mm, montada verticalmente) O material deverá ser anodizado na côr preta fôsca.

Estágio inversor:

T₅ - área mínima de 34 cm² (chapa de alumínio de 2 mm, enegrecida)

Excitador:

T₂ - área de 2 cm² (chapa de alumínio de 2 mm)

Os demais transistores dispensam dissipadores.

Fig. 3

MONTAGEM

Tratando-se de um circuito de áudio, os cuidados de montagem são os usuais. Pode-se utilizar construção convencional ou placas de fiação impressa.

O desenho da fig. 3 mostra a fiação impressa para meio-amplificador. Esta não inclui o circuito associado ao transistor T_8 , que deverá ser montado à parte ao lado da correspondente placa impressa (M' no esquema).

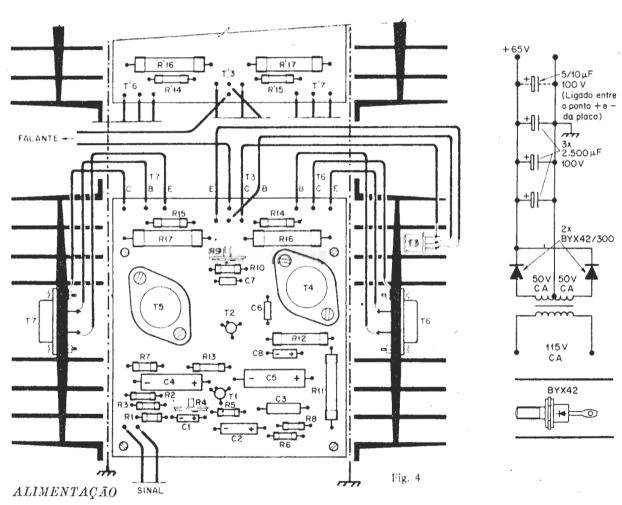
A figura 4 indica a posição dos componentes na placa de fiação. Os dissipadores de T_6 e T_7 (bem como T_6' e T_7) deverão ser montados fora da placa, em posição vertical, a fim de que se obtenha ventilação suficiente.

O tipo de dissipador ilustrado é o RSN220 (fabricação Brasele) cuja resistência térmica de 1,8°C/W o torna adequado a esta função.

Na mesma figura, nota-se a posição do transistor T₃ próximo do dissipador de T₆. Este transistor (BC108) pode ficar encaixado no dissipador, sendo porém essencial que esteja elètricamente isolado deste último. Nesta posição pode-se também colocar um BC238, cujo invólucro plástico dispensa a necessidade de isolação.

O dissipador de T_5 pode ser montado diretamente sóbre a face isolante da placa impressa, enquanto que o de T_2 é simplesmente encaixado na carcaça dêste transistor. Em todos os casos é imprescindível o uso de graxa de silicone para melhorar o contato térmico dos invólucros dos transistores com os respectivos dissipadores de calor. Alguns cuidados especiais que convém observar na montagem são os seguintes:

- devido às elevadas correntes do estágio de saída, a fiação de alimentação, bem como a de ligação à carga, deverá ficar afastada dos estágios de entrada e de um eventual pré-amplificador;
- os resistores R₁₆, R₁₇, R'₁₆ e R'₁₇ devem apresentar mínima diferença entre seus valores de resistência (5%).


Para ajuste do amplificador deve-se observar a seguinte seqüência de operações:

- Não ligar carga alguma nem alto-falante entre os terminais D e D'.
- Desligar a alimentação do meio-amplificador M'
- 3 Pôr em curto-circuito os terminais A e B.
- 4 Posicionar o cursor R₉ de maneira que a base de T₃ fique em "curto" com o coletor (transistor na máxima condução).
- 5 Alimentar o meio-amplificador M, e ajustar R, até obter uma corrente de 60 mA (consumo total de M).

- 6 Ajustar R₄ para obter 30 V entre os terminais D e a terra.
- 7 Desligar a alimentação de M, ligar a de M' e repetir as etapas 3 até 6.
- 8 Ligar a alimentação em ambas metades (M e M') do amplificador. Medir a tensão entre os pontos D e D'. O valor indicado deve ser inferior a 300 mV.

Caso isto não ocorrer, retocar ligeiramente um dos potenciômetros, R_4 on R'_4 .

9 — Desfazer o "curto" entre A e B. Conectar a carga entre D e D' e injetar o sinal entre A e B, para o teste final de funcionamento.

Uma fonte de alimentação adequada é requisito essencial para se conseguir bom funcionamento dêste amplificador. Por exemplo, o transformador deverá ser capaz de fornecer a corrente máxima sem excessiva queda de tensão nos enrolamentos. Os dados fornecidos a seguir permitem construir um transformador adequado para êste aparelho, mesmo sob condições de funcionamento contínuo em máxima potência:

Núcleo: perna central 5 cm altura do pacote 7 cm Enrolamentos: primário — 144 espiras, fio esmaltado 1,5 mm

secundário — 2 x 60 espiras, fio esmaltado 1,9 mm

usar isolação entre camadas.

Devido à elevada corrente solicitada pelo circuito, usam-se retificadores tipo "profissional" capazes de suportar C.C. até 10 ampères. Estes diodos deverão ser montados em dissipadores de cobre ou alumínio de 2 mm, com acabamento fôsco e tendo cada um 16 cm² de área, no mínimo.