Service Service Service # ServiceManual PHILIPS HIGH FIDELITY LABORATORIES, LTD. SERVICE DEPT. P.O.BOX 2208 FORT WAYNE, INDIANA 46801 **PHILIPS** # TABLE OF CONTENTS | Description | Page | |-------------------------------------------|---------| | Technical Data | 1 | | General Description | 2 | | Circuit Description | 2,3 & 4 | | Operating Controls, Jacks, and Indicators | 4 | | Disassembly Instructions | 5 | | Cabinet Replacement Parts List | 6 | | Adjustments | 8 | | Output Transistor Replacement | 13 | | Electrical Replacement Parts List | 13 & 14 | | | | # LIST OF ILLUSTRATIONS | Figure | | Description | Page | |--------|------|-------------------------------------------------------------|---------| | 1 | | Block Diagram | 1 | | 2 | | Rear Panel | 4 | | 3 | | Front Panel | 4 | | 4 | | Grille Removal | 5 | | 5 | | Cabinet and Rear Panel Exploded View | 5 & 6 | | 6 | **** | Wiring Diagram | 7 & 8 | | 7 | | Input Sensitivity Chart | 7 | | 8 | | Adapter Cable Drawing | 7 | | 9 | | Stereo Cable Drawing | 8 | | 10 | | Schematic Diagram | 9 & 10 | | 11 | | Printed Circuit Boards with Test Points and Basing Diagrams | 11 & 12 | | 12 | **** | Cable Chart | 14 | #### **TECHNICAL DATA*** #### General Frequency Response: 27-20,000 Hz Volume: 30 litres (20 litres acoustic),(1831 cu. inches acoustic). Loudspeakers: AD10100/MFB, 10" Woofer AD0210/SQ8, 2" Dome Mid-Range AD0140/T8, 1" Dome Tweeter Power Supply: 117 Volts, 60 Hz Power Consumption, Maximum: 150 Watts Dimensions: 320 x 540 x 265mm (13 x211/4 x 101/4 inches) Treble Filter: Continuously variable 0-18dB/Octave, -3dB at 7 KHz. Crossover Networks: Electronic Crossover at 500 Hz. Passive Crossover at 3500 Hz. Connections: Signal: PHONO jacks (2 input, 2 output) AC inlet AC outlet (unswitched) Input Sensitivity: Continuously variable 1-3 volts at 100K ohms, 3-20 volts at 1K ohm. Automatic On/Off Switch: Turn-On time \leq 1 second, with an input signal \geq 2mV. Turn-Off time > 2 minutes **Amplifiers** Low Frequency Amplifier: Minimum "RMS" Power: 40 Watts RMS Bandwidth: 35 Hz to 1000 Hz Maximum Total Harmonic Distortion: 0.2% Load Impedance: 4 ohms High Frequency Amplifier: Minimum "RMS" Power: 20 Watts RMS Bandwidth: 400 Hz to 20 KHz Maximum Total Harmonic Distortion: 0.2% Load Impedance: 8 ohms * Subject to Modification Figure 1, Block Diagram #### General Description The RH567 is an electronic, bi-amplified, three-way loudspeaker system employing the PHILIPS Motional Feedback (MFB) principle. The enclosure, which has a total volume of 30 liters, incorporates three driver units, an electronic regulator and control system, and two power amplifiers; one for the woofer and one for the mid-range and tweeter. The woofer (low frequency) amplifier is terminated in a 4 ohm load impedance and has a minimum continuous average sine wave (RMS) power of 40 watts. The mid-range/tweeter (high frequency) amplifier, which is of similar design to the low frequency amplifier, is terminated in an 8 ohm load impedance, and is, therefore, limited to an output power of 20 watts. An electronic crossover is used to divide the input signal between the two power amplifiers. This crossover consists of a high-pass filter feeding the high frequency amplifier, and a low-pass filter feeding the low frequency amplifier. Both filters have a cut-off point of 500 Hz, resulting in amplifier crossover at that frequency. Since it is physically impossible for the woofer cone to produce frequencies below 25-35 Hz at a moderate sound pressure level without resulting in high non-linear distortion, the response of the low frequency amplifier is rolled-off below 40 Hz by a high-pass filter placed immediately after the low-pass filter section of the electronic crossover. The output of the high frequency power amplifier feeds a typical passive crossover network with a crossover point of 3500 Hz. The high-pass section of this crossover feeds the 1" dome-type tweeter, while the low-pass section feeds the 2" dome mid-range. The output of the low frequency power amplifier feeds the 10" MFB woofer. The woofer consists of a standard 10" driver with an accelerometer mounted under the dust cover at the apex of the cone. It is, in fact this piezoelectric transducer (PXE) which constitutes the most important aspect of the entire system. Its function is to measure the acceleration of the woofer cone, which is exactly proportional to its acoustic output as long as the cone moves as a single, rigid "piston". This requirement forms part of the reasoning behind the 500 Hz crossover point; as above this frequency the cone will begin to move independently in small areas, resulting in less correlation between central acceleration and acoustic output. The signal developed by the PXE is fed to a comparator circuit which derives a correction signal from any differences between the input signal and the woofer cone acceleration signal. This correction signal is combined with the input signal and fed to the low frequency amplifier, resulting in considerable reduction of distortion attributable to the loudspeaker, and keeps the acoustic output virtually identical to the input signal waveform. This is the principle of motional feedback. #### CIRCUIT DESCRIPTION Before examining the individual circuits in detail, it would be useful to know the construction of the acceleration transducer assembly. As mentioned, the Motional Feedback transducer is mounted under the dust cover in the apex of the woofer cone, where it is in rigid mechanical contact with the voice coil assembly. The transducer consists of a small printed circuit board containing the ceramic piezoelectric transducer and its associated FET circuitry. The mounting of the piezoelectric chip is quite critical: It is held in place in a small hole in the PC board by two resilient rubber clamps, allowing a calculated degree of flexure due to the cone's acceleration. The leads to the chip are fastened to the PC board by two carefully weighed drops of solder . . . a most important consideration if assembly mass is to be accurately controlled. As piezoelectric transducers (generators) are capacitive voltage sources, they must be loaded with a high impedance to obtain a linear frequency response from them. However, high impedance circuits running long distances (such as, from the motional feedback transducer back into the power amplifier) are quite susceptible to noise. Therefore, a junction FET has been used in the assembly as an impedance converter. It will be noticed that the circuit configuration is rather unusual in that the FET drain feeds the emitter of TS436 instead of the base. There are two benefits to this approach. First, the FET source provides a relatively low source impedance to reduce susceptibility to noise. Second, the common base operation of TS436 makes the driving signal a "varying resistance" rather than a "varying voltage". In other words, the base voltage of TS436 is fixed by the voltage divider network made up of R677, R680, R678, R679, and zener diode D462; and the conduction of TS436 is controlled by varying the value of its emitter "resistor", the FET. This "dynamic resistance" drive signal makes the circuit quite insensitive to any noise signal voltage which might appear on the signal lead, as the gain from a voltage input at the emitter is very low. It will be further noticed that the collector voltage of TS436 is Zener stablized. This is to place the quiescent operating point on the center of the transistors curve, as the static conduction of TS436 regulates the source-to-drain bias on the FET, which must be carefully held below a maximum value to preserve the gates high input impedance. #### Amplifier System Input At the signal input to the Motional Feedback System are four phono jacks. These are connected in two individual pairs: left input and output, and right input and output; to allow the interconnection of two or more Motional Feedback Systems while carrying both (stereo) channel signals through the interconnection wiring. These jack pairs feed the input channel selector switch (SK-B) which allows the user to choose whether the particular Motional Feedback System is driven by the left or right channel signal. Following the input channel selector switch the signal is attenuated to the proper level by the input Sensitivity Control, R416, and applied to an emitter follower stage, TS421. The signal then passes through a frequency selective network which allows the frequencies over 7 KHz to be rolled off by the High Frequency Roll Off Control, R417. After passing through another emitter follower (TS422) the signal is applied to the active crossover filters which determine the input to the power amplifiers. #### High Frequency Amplifier At the high frequency amplifier input there is an active high-pass filter. As is normally the case this filter is partially contained in the emitter to base feedback loop around the first transistor, TS441. The slope of the filter is 18db/octave, and its -3db point is 500 Hz. The amplifier itself is of a common design. Its operation is class A/AB to eliminate crossover distortion at low signal levels. Up to about 1W of output power the amplifier operates in a class A configuration and changes to class AB at higher input signal levels. Each output stage is comprised of a single-chip Darlington device, assuring that the two transistors involved are completely complementary. To insure thermal stability of the Darlington pair, a negative temperature coefficient resistor (thermistor), R719, is used in the bias control circuit, and is mounted on the Darlington package heat sink along with TS442, which is also part of the quiescent bias control. The LC networks C566-S492 and C568-S493, respectively, form high-pass and low-pass filters for the tweeter and mid-range speakers. Together they form a conventional passive crossover network. The series RC network across the mid-range is for impedance correction at high frequencies. Coil S491 is a normal high frequency neutralizing choke. ### Low Frequency Amplifier At the input of the low frequency channel is a low-pass filter, TS423. This circuit is similar to the 500 Hz high-pass filter incorporating TS441, and likewise has a slope of 18db/octave. Since TS423 is in the emitter follower configuration its output appears at the emitter, from which it is coupled to the base of the next stage. This stage, a high-pass filter, is made up of TS424 and associated components, and is again arranged in the emitter follower configuration. The circuit acts as a rumble filter and attenuates all frequencies below approximately 35 Hz at 12db/octave. This makes the frequency response the same as that of a speaker with a natural resonance of 35 Hz. The signal, bandwidth limited by filters to 35-500 Hz, is applied to the adding stage, TS425, where it is combined with the feedback signal derived from the accelerometer circuit. The feedback signal arrives at the base of TS425 via C518 and R627. The "normal" input signal is applied via C516 and R634. The gain factor of this adding circuit is approximately one. The combined signal is then coupled to a differential amplifier consisting of TS428 and TS429. This stage is used to shape the electrical feedback signal, which is taken from the load side of C535 (TP1). The low frequency amplifier operates class B. Since the frequency range does not exceed 500 Hz, practically no higher harmonics will be produced by the woofer and subsequently the possibility of crossover distortion is effectively suppressed without the need for class A/AB operation. Like the high frequency amplifier discussed earlier, each output stage is comprised of a single chip Darlington device. The thermistor, R662, is used for thermal stability and is mounted on the heat sink along with TS430 which is also part of the quiescent bias control. The output from the low frequency amplifier is coupled through C535 to the woofer. The signal from the woofer/transducer assembly is applied to the emitter of TS436, as explained earlier in the circuit description. A prominent feature of the collector circuit of this transistor is the zener diode, D462, which is used to smooth the power supply voltage. If an electrolytic capacitor were used, the circuit would start oscillating (motorboating) at low frequencies. The signal is coupled from the collector of TS436 to the frequency correction stage consisting of TS437 and TS438. Down to approximately 80 Hz the correction stage has a flat frequency response. Below that the signal has an increasing gain slope of 6db/octave. The reason is the natural resonance of the loudspeaker, which in this case is also about 80 Hz. In the flat part of the response the signal is amplified by a factor of only two or three, while below 80 Hz the gain increases to a factor of about 20. Two transistors, TS437 and TS438, were used to avoid distortion. The signal at the output of the frequency correction stage is coupled through C542 to R692 where the feedback level may be adjusted. From the wiper of R692 the signal is coupled through C518 and R627 to the adding stage which was discussed earlier. #### Automatic Electronic On/Off Switch The arrangement for switching the system On and Off has a special feature. The circuit consisting of TS447 through TS452 "senses" when a signal is applied to the speaker system and applies power to the high and low frequency amplifiers. This feature is operative only when both the Power and Automatic switches are in the "On" position. With the Automatic switch in the "Off" position the Power switch must be used to turn the system On and Off. The input signal is applied to the gate of TS447. The output of this stage is coupled via C578 and R743 to the stage comprised of TS448 and TS449 where it is amplified and rectified. When the input signal exceeds a preset level the Schmitt trigger, TS450 and TS451, changes states and turns on the Relay Driver, TS452, which in turn energizes the relay, RE402. A time delay circuit located immediately ahead of the Schmitt trigger will keep the relay from de-energizing during short no-signal periods; such as at the end of a record or tape. If no signal is applied to the unit within approximately 2 minutes the Schmitt trigger will change states and the relay will de-energize. With the relay de-energized only sources +6, +7 and +8 have power applied to them. The Power switch must be placed in the "Off" position to remove power from the entire unit. #### Overload Circuit The treble speaker (tweeter) is protected against overload conditions which might occur when the speaker must produce a maximum output for a long period of time. Experience has shown that the tweeter is more vulnerable to overloads than the woofer and the mid-range. The signal across the tweeter is rectified by D465 and filtered by R735 and C572. Since R735 and C572 also form an RC network with a time constant of 1 second, the positive voltage at the base of TS446 developes rapidly. Being an emitter follower, the voltage on the emitter increases along with the base. The output obtained at the emitter of TS446 is coupled through the voltage divider network comprised of R737 and R761 to the base of TS440. During an overload condition the output of TS446 causes the Schmitt trigger (TS439-TS440) to change states, thus driving TS426 into conduction. With TS426 conducting, the signal at R608 is shunted to ground through TS426 and C508, and output power is reduced to near zero. This reduction in loudness is an indication for the listener that the Volume control should be turned slightly counter-clockwise. From this moment C572 will discharge via TS446 until the emitter voltage reaches such a low value that the Schmitt trigger (TS439-TS440) changes states again shutting off TS426. The music signal then passes on without attenuation. #### **Power Supply** The power supply circuits are conventional. Only the supply voltage for the preamplifiers (source +7) is electronically regulated (TS455-TS456). The circuit also ensures that this voltage increases slowly to the correct level, as is necessary to prevent switching transients. This is a point to which great care must be paid in circuits with a bandwidth extending down to very low frequencies. # OPERATING CONTROLS, JACKS, AND INDICATORS (Refer to Figures 2 and 3) - Power Switch: This is the main power switch and must be on for the unit to operate. - 2. Automatic Switch: With this switch off, the unit functions normally by using the Power Switch. With the Automatic Switch and the Power Switch in the on position the unit operates on a "standby" basis. Part of the power supply is energized at all times, and the rest of the power supply energizes when a signal is applied to the unit. When the signal is removed from the unit it will return to the "standby" condition after a short delay. To turn the unit off completely the Power Switch must be in the off position. The pilot lamp (LED) is not lit in the "standby" or off condition. - 3. Fuse Holder (fuse 6.25ASB, 125V) - 4. Fuse Holder (fuse 3A SB, 250V) - 5. Fuse Holder (fuse 1.5A SB, 250V) - High Frequency Roll Off Control: This control allows you to choose the slope of roll off, in dB per octave, for those frequencies above 7K Hz. - 7. Input Sensitivity Control: This control allows you to match the speaker system to your amplifier or preamplifier. The control should be set for the output voltage of the equipment being used to drive the speaker system. If the driving equipment is rated in watts RMS rather than volts, refer to Figure 7. - Signal Input Jack, Left Channel: Receives the left channel output signal from the driving equipment. - Signal Input Jack, Right Channel: Receives the right channel output signal from the driving equipment. - Signal Output Jack, Left Channel: Relays the left input signal for feed-thru hook-up to other MFB. - Signal Output Jack, Right Channel: Relays the right input signal for feed-thru hook-up to other MFB. - Input Channel Selector Switch: Determines which channel input will be amplified by that particular speaker assembly. IMPORTANT: Take special care that the connections for Left and Right on the control unit are not interchanged. - 13. AC-Inlet (117 Volts, 60 Hz). - 14. AC-Outlet (117 Volts, 60 Hz, 550 Watts) Unswitched. - Pilot Lamp (LED), on front panel: This lamp, when lit, indicates that the speaker unit is completely operative. When the unit is in the "standby" condition or completely off the indicator is not lit. Figure 3, Front Panel Figure 2, Rear Panel #### DISASSEMBLY INSTRUCTIONS NOTE: To insure proper reassembly, replace each screw in the same location from which it was removed. #### Chassis Access (Refer to Figure 5) - Remove the five screws securing the rear panel to the speaker enclosure. These screws are designated by an "0" on the rear panel and an "A" in Figure 5. - The rear panel is hinged, allowing it to swing away from the back of the speaker enclosure. Pull out on the right side of the rear panel to gain access to the chassis. - To completely remove the rear panel from the speaker enclosure, disconnect Plug (4) from Socket (2) and lift the rear panel up and out of the hinge brackets. - 4. To reassemble, reverse the preceding steps, making certain Plug (4) is inserted properly into Socket (2). This is accomplished by placing the referenced end of the plug adjacent to the referenced end of the socket. #### LED Access (Refer to Figure 5) - Remove the three screws securing the Name Panel (19) to the front of the speaker assembly. Then pull outward on the Name Panel to gain access to the LED. - To reassemble, reverse the preceding steps, making certain the LED is properly positioned into the Name Panel (19). #### Speaker Access (Refer to Figures 4 & 5) - Insert a table knife or similar dull-edged tool between the Grille (20 or 21) and the speaker enclosure frame. - Draw the Grille (20 or 21) forward while prying outward with the tool. The Grille is held to the speaker enclosure by friction snaps. - To reassemble, place the Grille (20 or 21) into position while aligning the snape. Then press firmly at the corners. #### Main PC Board Access (Refer to Figure 5) Swing the rear panel away from the back of the speaker enclosure (see Chassis Access). - Remove the six screws securing the Main PC Board / Heat Sink to the rear panel. - The Main P.C. Board/Heat Sink is hinged to the inside of the rear panel, allowing it to swing away for easy access to either side of the P.C. Board. - To remove the Main P.C. Board/Heat Sink from the rear panel, lift it up and out of the hinge brackets. - To reassemble the Main P.C. Board/Heat Sink, reverse the preceding steps. CABINET REPLACEMENT PARTS LIST (Refer to Figure 5) | REF. | DESCRIPTION | PART NO. | | | |------|-------------------------------------|--------------------------|--|--| | 1 | Mica Insulator f/TS432a & TS432b | | | | | 2 | (2 used)
8 Pin Socket | 5H46690433
4H26750221 | | | | 2 3 | Bracket f/TS442 & TS430 (2 used) | 4H25540127 | | | | 4 | 8 Pin Plug | 4H26450081 | | | | 5 | AC Switch (SK-A-1) | 4H27610564 | | | | 6 | Mica Insulator f/TS444a & TS444b | 41127010004 | | | | | (2 used) | 4H25540112 | | | | 7 | Automatic Switch (SK-D-111) | 4H27610616 | | | | 8 | Insulator Bushing f/TS432a, TS432b, | | | | | | TS444a & TS444b (6 used) | 4H53251043 | | | | 9 | Fuse Holder (3 used) | 4H25640048 | | | Board / nside of ocess to he rear reverse | REF. | DESCRIPTION | PART NO. | | | | |------|------------------------------------|------------|--|--|--| | 10 | Knob,w/Compression Spring (2 used) | 4H41330623 | | | | | 11 | AC Inlet (Interlock) | 4H26520062 | | | | | 14 | Jack Assembly (Input/Output) | 4H26740222 | | | | | 15 | AC Outlet | 4H26730255 | | | | | 16 | Channel Selector Switch (SK-B-11) | 4H27610616 | | | | | 17 | Disc Cam f/SK-E-1V | 4H53260643 | | | | | 18 | Input Impedance Switch (SK-E-1V) | 4H27890303 | | | | | 19 | Name Panel | 4H45910476 | | | | | 20 | Grille (Small) | 4H44530042 | | | | | 21 | Grille (Large) | 4H44530043 | | | | | 22 | Locking Pin Holder (8 used) | 4H46690844 | | | | | 23 | Locking Pin (8 used) | 4H41720039 | | | | | 440, TS445 D465, | 75.475,439,440 | T5429 D462 TS428 | 75436 TS474 | 7 75425 | 73 438 TS41 | 154 | T\$442 | NSC! | |----------------------------|-----------------------------|---------------------|-----------------------------|------------------|-------------------|-------------------|-----------|------| | T\$430_4326.432a | | TS431 | T5443 T5441 | 54.91 | | i,b, Di66 | TS444a,b, | SC | | VL410,409,408 D483,482,481 | D461,477 | \$402 RE 402 | TS455,456,5492 | | Sycholypto years. | 5493 | | SCL | | 508 572 | 526 508 | 538 524 545 523 537 | 515 564 516 551522 | C 539 | 5/7 543 5/4 5/ | 512 518 542 541 | | | | 533 | 530 | 522 524 525 | 555 563 550 561 534 | 9 9 60 9 54 9 50 | 10 511 552 561 51 | 559 5 | | | | 589 527 | 536 590 580 | 528 | | 66 562 587 | | - | | | | | 636 756., 759 | | 630 634 628 648 633 626 686 | 689 629 635 | 3 691 627 690 682 | 692 631 69 | | | | | 43547 651 656 658 660 | | 99 700 724 625 709 724 70 | 7 624 632 710 6 | 7% 701,70 | 621622623721 | | | | | 99 557 665 661 655 5 5 5 61 | 671.6 | 726 729 681 775 675 | 711 712 7 | 0 727 713 722 | 19 723 728 718 72 | 719 | | | 60 762 761 735 | 637 636 7 60 7 | 6.767 | 764 763 765 677 766 | | 620 | 730 | | | Output of Driving Amplifier (Rated in Watts, RMS) | | | 4 Ohm Load | 8 Ohm Load | |--------------------------------------|------|------------|------------| | | 3 V | < 5 W | < 2,5 W | | | 4 V | 5 - 10 W | 2, 5 - 5 W | | Input Sensitivity
Control Setting | 6 V | 10 - 30 W | 5 - 15 W | | | 11 V | 30 - 100 W | 15 - 50 W | | | 20 V | >100 W | > 50 W | | | | | | Figure 7, Input Sensitivity Chart Figure 8, Adapter Cable Drawing | 5490 | | | 1542 | 2 04 | 72.754 | 21,448, | \$1,0476 T | 5.452.450 | | MISC | |---------|---------|------|---------|-------|----------|---------|------------|-----------|----------|------| | 5K-D | 5401 | SK-E | SK | -B 15 | 667 | 0473 | 471.470.T | 5449 04 | 14.475 | MISC | | SK-A | | | | | | | 5 | 405,406,1 | O4, D480 | MISC | | 588 | | | 506 | 301.5 | 03 504 | lisosu. | 502 | 505 | 581 | C | | 535.565 | | | 575 500 | - 5 | 76.578 | 552 | 579 | 3000 | 580 | | | | | | | | | | | | | 0 | | | 598.599 | 417 | | | | | 610 604 | KANE . | 5/4 | R | | | | 416 | | | 751 6-01 | | | 755 | - | - 8 | | | | | 800 700 | 738 | 741 74 | 3 742 | 739 750 | 745 747 | TLB. | R | | | | | | | 766 | 744 751 | 253 754 7 | 4.6 | | - 13 | Figure 9, Stereo Cable Drawing #### **ADJUSTMENTS** IMPORTANT: The amplifier circuitry should be allowed to warm-up for 1-1½ minutes to stabilize prior to final adjustments. #### Low Frequency Amp Quiescent Current Adjustment To adjust the complementary symmetry push-pull output stage of the low frequency amplifier: - Switch the speaker system On and remove the audio input signal. - Connect a DVM across R670 and adjust R665 for 37.5 mV. NOTE: This adjustment must be performed when the low frequency amplifier output transistors are replaced. Misadjustment may cause crossover distortion or possible premature failure of the output transistors. # High Frequency Amp Quiescent Current Adjustment To adjust the complementary symmetry push-pull output stage of the high frequency amplifier: - Switch the speaker system On and remove the audio input signal. - 2. Connect a DVM across R727 and adjust R722 for 35mV. NOTE: This adjustment must be performed when the high frequency amplifier output transistors are replaced. Misadjustment may cause crossover distortion or possible premature failure of the output transistors. #### Motional Feedback Adjustment To adjust the amount of feedback produced by the frequency correction circuit: - Switch the speaker system On and place the Input Sensitivity Control, located on the rear panel, to the 1V position. Connect an AC VTVM to TP1. - With a low impedance (less than 100 ohms) Audio Generator apply a 10 mV RMS, 125 Hz signal to the Audio Input Jack located on the rear panel. Place the Channel Selector Switch in the proper position to amplify the signal. - 3. Adjust R692 for 82 mV. NOTE: This adjustment must be made after replacing a bass speaker (woofer). | MISC | | | J | 15421 | TS47 | 26 | 5490 | 1.TS439 TS440 | TS422 | | TS 423 | Acceptance. | T | |----------|----------------|------------|-------------|------------|------|---------|-----------------------|---------------|--------------------------|---------|--------|-------------|--------| | MISC | T 5 4 4 7 | D471 + 473 | T\$448 | TS449 | 0/ | 474-476 | T5 450 | 7545 | 1 0476,477 | - CHOOL | | 0466 | T5441+ | | C | | 500 | 501 | Englished) | 508 | 502 504 | 506 503 | 505 | 510 511 | 512 | 513 | 514 51 | 5 | | C 575 | 576 577 578 | | 579 | | 580 | 5.81 | | | 5' | 52 553 | 554 | 555 | 56 | | R | 598 599 600 | - 4 | 416 602 601 | 503+6/ | 58 | | 417 | 613 609-612 | 614 615 620 621 622 | 623 | | 624 | 6.25 | | R | | | 717 | 756 | 6 | 757 | 7 758 760 | 759 761 | and the same of the same | | | 63 | 632 | | R | 738 739 740741 | 742 -744 | 745 | 5 745 | 747 | | 748 749 | 742 754 | 753 751 755 | | 702 | +706 | 599.7 | | Market - | | | | | | | and the second second | | | | | | | Figure 10, S igure 10, Schematic Diagram Figure 11, Printed Circuit Boards | 38,423 | 5490 T5450,452 0476 T5451,448 D472 T5422 | MISC | |--------------------|---|------| | -56 T5422,4440,b | D475,474 TS449 D470,741,473 TS447 TS421 SK-E | MISC | | 5493 | SK-B | MISC | | 541 542 518 512 | 581 505 502 504 503 501 506 | C | | ∆t 559 | 580 579 557 576 500 575 | C | | | 578 | C | | 91 693 627 531 592 | 611 604 610 614 613 615 612 609 607 602 508 417 598 599 | R | | 4 721 623 622 621 | 755 753 744 742 608 606 605 751 746 601 603 416 | R | | 27 720 718 728 723 | 748 747 745 750 739 743 744 741 740 600 | R | | -0 730 719 | 754 749 746 738 | R | th Test Points and Basing Diagrams # OUTPUT TRANSISTOR REPLACEMENT Since transformerless complementary symmetry push-pull output circuitry is utilized in the motional feedback system, extreme care should be exercised when servicing or replacing the output transistors. It is imperative that the transistor be isolated from the metal bracket by means of a mica insulator coated on both sides with Dow-Corning DC4 silicon grease, or equivalent. Before removal of an output transistor, the type (PNP or NPN) should be noted to insure the identical replacement is reinserted into the same holes of the P.C. Board. The output transistors in both the low and high frequency amplifiers should be replaced with matched pairs, as indicated in the Electrical Replacement Parts List. After replacing the low frequency amplifier output transistors the Low Frequency Amp Quiescent Current Adjustment must be performed. Likewise, if the high frequency amplifier output transistors are replaced the High Frequency Amp Quiescent Current Adjustment must be performed. Misadjustment of the output transistors may cause crossover distortion and possible premature failure of the output transistors. # **ELECTRICAL REPLACEMENT PARTS LIST** | REF. | DESCRIPTION | PART NO. | REF. | DESCRIPTION | PART NO. | |--------------|--|--------------------------|--------------|-------------------------------------|--------------| | | COILS & TRANSFORMERS | | | | | | Terreno. | | | R714 | Safety,56 ohm,5%,¼W | 4H11130029 | | S401 | Power Transformer | 4H14550059 | R719 | N.T.C.(Thermistor), 1.5K, 10%, 1/2W | 4H11630087 | | S490 | Coll, 60 mH | 4H15610346 | R721 | Safety,39 ohm,5%,¼W | 4H11130005 | | S491 | Coil, 3.6 uH | 4H15750718 | R723 | Safety,470 ohm,5%,¼W | 4H11130013 | | S492 | Coll, .35 mH | 4H15750809 | R724 | Safety,680 ohm,5%,¼W | 4H11130388 | | S493 | Coll, .35 mH | 4H15750809 | R725
R727 | Safety,4.7 ohm,5%,%W | 4H11130262 | | | - Committee of the comm | | R728 | Carbon Film,1 ohm,5%,1W | 4H11023027 | | | CAPACITORS | | B730 | Carbon Film, 1 ohm, 5%, 1W | 4H11023027 | | | And the second s | | R735 | Wire Wound, 12 ohm, 10%, 4W | 4H11221056 | | C508 | Electrolytic, 220 mfd.,16V | 4H12420473 | R762 | Metal Film,1 meg.,5%,1/2W | 4H11042187 | | C516 | Electrolytic, 4.7 mfd.,63 V | 4H12420494 | 11702 | Wire Wound, 1.8K,5%,4W | 4H11221114 | | C518 | Electrolytic, 47 mfd.,4V | 4H12420582 | | CONTROLS & SUUTALIS | | | C523 | Electrolytic, 47 mfd.,40V | 4H12420487 | | CONTROLS & SWITCHES | | | C524 | Electrolytic, 47 mfd., 10V | 4H12420461 | R416 | Input Sensitivity, 200K | 411143333333 | | C525 | Electrolytic, 33 mfd.,16 V | 4H12420468 | R417 | High Frequency Roll Off, 20K | 4H10120473 | | C526 | Electrolytic, 15 mfd.,40V | 4H12420484 | R665 | Current Adjust (Low Freq. Amp) | 4H10130317 | | C528 | Electrolytic, 680 mfd.,40V | 4H12420534 | 11000 | 470 ohm | ************ | | C535 | Electrolytic, 4700 mfd.,63V | 5H12474071 | R692 | Motional Feedback Adjust,47K | 4H10110063 | | C537 | Electrolytic, 10 mfd., 25V | 4H12420475 | R722 | Current Adjust (High Freq. Amp) | 4H10110027 | | C539 | Electrolytic, 10 mfd.,25V | 4H12420475 | 11722 | 470 ohm | | | C541 | Polyester Film, 1.5 mfd., 10%, 100V | 4H12140452 | SK-A-1 | AC Power Switch | 4H10110063 | | C542 | Electrolytic, 10 mfd.,25V | 4H12420475 | SK-B-11 | Channel Selector Switch | 4H27610564 | | C544 | Electrolytic, 470 mfd.,6.3V | 4H12420457 | SK-D-111 | Automatic Switch | 4H27610616 | | C550 | Electrolytic, 15 mfd.,40V | 4H12420484 | SK-E-1V | Input Impedance Switch | 4H27610616 | | C551 | Electrolytic, 10 mfd.,63 V | 4H12420496 | | impar impedance Switch | 4H27890303 | | C554 | Electrolytic, 4.7 mfd.,63V | 4H12420494 | | SEMICONDUCTORS | | | C557 | Ceramic, 68 pf.,2%,100V (N750) | 4H12231076 | 10000 | | | | C560 | Electrolytic, 470 mfd.,25V | 4H12420527 | D461 | Silicon Diode, BAW62 | 5H13030613 | | C561 | Polyester Film, 5.6 nf., 10%, 630 V | 4H12140402 | D462 | Zener Diode, BZY881C18V | 5H13030304 | | C563
C565 | Ceramic, 100 pf., 10%, 100V (N750) | 4H12231081 | D465 | Silicon Diode, BAW62 | 5H13030504 | | C566 | Electrolytic, 680 mfd.,63V | 5H12474017 | D466 | Silicon Diode, BAW62 | 5H13030613 | | C567 | Polyester Film,4.7 mfd.,10%,100V | 4H12140461 | D470 | Zener Diode, BZX791C18V | 5H13044286 | | C568 | Polyester Film, 6.8 mfd., 10%, 100V | 4H12140463 | D471 | Silicon Diode, BAW62 | 5H13030613 | | C572 | Polyester Film, 4.7 mfd., 10%, 100V | 4H12140461 | D472 | Silicon Diode, BAW62 | 5H13030613 | | C576 | Polyester Film,1 mfd.,10%,100V | 4H12140447 | D473 | Silicon Diode, BAW62 | 5H13030613 | | C578 | Electrolytic, 15 mfd.,16V | 4H12420467 | D474 | Zener Diode, BZX791C4V7 | 5H13034174 | | C579 | Electrolytic, 4.7 mfd.,63 V | 4H12420494 | D475 | Silicon Diode, BAW62 | 5H13030613 | | C581 | Electrolytic, 4.7 mfd.,63 V | 4H12420494 | D476 | Silicon Diode, BAW62 | 5H13030613 | | C586 | Electrolytic, 330 mfd.,10V | 4H12420465 | D477 | Silicon Diode, BAW62 | 5H13030613 | | C587 | Electrolytic, 10 mfd.,63V | 4H12420496 | D480 | Light Emitting Diode (LED) COV24 | 4H13030922 | | C588 | Electrolytic, 22 mfd.,63V | 4H12420499 | D481 | Silicon Bridge Rectifier, 8Y164 | 5H13030414 | | 0000 | Electrolytic, 2 x 2350 mfd.,63V | 4H12470198 | D482 | Silicon Bridge Rectifier, BY 164 | 5H13030414 | | | RESISTORS | | D483 | Silicon Bridge Rectifier, BY164 | 5H13030414 | | | neala i ona | | TS421 | PNP Silicon, BC558B | 5H13044197 | | R636 | Metal Film, 22.1K, 1%, %W | 41144554444 | TS422 | PNP Silicon, BC558 | 4H13040941 | | R637 | Metal Film, 18.2K,1%,½W | 4H11651114 | TS423 | PNP Silicon, BC558A | 4H13040962 | | R642 | Metal Film, 4.75K, 1%, 15W | 5H11654382 | TS424 | PNP Silicon, BC558A | 4H13040962 | | R643 | Metal Film, 5.11K, 1%, 1/2W | 4H11651116 | TS425 | NPN Silicon, BC548 | 4H13040938 | | R644 | Safety, 10 ohm,5%,1/8W | 4H11651115
4H11130405 | TS426 | NPN Silicon, BC548A | 4H13040948 | | R645 | Safety, 10 ohm,5%,1/8W | 4H11130405 | TS428 | PNP Silicon,BC558B | 5H13044197 | | R647 | Metal Film, 10K, 1%, ½W | | TS429 | PNP Silicon,BC558B | 5H13044197 | | R651 | Metal Film, 13K, 1%, ½W | 5H11654327 | TS430 | NPN Silicon, BC548 | 4H13040938 | | R659 | Safety,39 ohm,5%,%W | 4H11651158 | TS431 | NPN Silicon, BD137 | 5H13040664 | | R660 | Metal Film,47.5K,1%,½W | 4H11130005 | TS432a/b | Darlington Matched Pair BDX65A/01- | | | R662 | N.T.C. (Thermistor) 1.5K, 10%, 1/2W | 4H11651117 | | BDX64A/01 (MJ3001 - MJ2501) | 4H13041115 | | R664 | Safety, 18 ohm, 5%, 14W | 4H11630087 | TS436 | NPN Silicon, BC549 | 4H13040964 | | R668 | Safety,4.7 ohm,5%,¼W | 4H11130317 | TS437 | PNP Silicon, BC559A | 4H13041052 | | R669 | Carbon Film,1 ohm,5%,1W | 4H11130262 | TS438 | NPN Silicon, BC547 | 5H13044257 | | R670 | Carbon Film,1 ohm,5%,1W | 4H11023027 | TS439 | NPN Silicon, BC548B | 4H13040937 | | R672 | Carbon Film,1 ohm,5%,1W | 4H11023027 | TS440 | NPN Silicon, BC548B | 4H13040937 | | R673 | Carbon Film,1 ohm,5%,1W | 4H11023027 | TS441 | PNP Silicon, BC558A | 4H13040962 | | R681 | Metal Film,6.8K,2%,½W | 4H11023027 | TS442 | NPN Silicon, BC548 | 4H13040938 | | R682 | Metal Film, 18K, 2%, 1/2W | 5H11654908 | TS443 | NPN Silicon, BC546 | 4H13041001 | | R684 | Metal Film, 100K, 2%, 1/2W | 5H11654382 | TS444a/b | Darlington Matched Pair, BD267A- | | | R700 | Metal Film, 100K, 2%, 78W | 4H11651123 | | BD266A | 4H13041045 | | R701 | Metal Film, 24.3K, 1%, ½W | 4H11651118 | TS446 | NPN Silicon, BC550C | 4H13041096 | | R702 | Metal Film, 24.3K, 1%, %W | 4H11651118 | TS447 | Silicon, N-Channel FET, BF245B | 4H13041024 | | R705 | Metal Film,47.5K,1%,½W
Metal Film,33.2K,1%,½W | 4H11651117 | TS448 | NPN Silicon, BC548C | 5H13044196 | | R707 | Metal Film,3.32K,1%,½W | 5H11654915 | TS449 | NPN Silicon, BC548B | 4H13040937 | | | 176 da 1 1111, 3.32 N, 176, 72 W | 5H11650538 | TS450 | NPN Silicon, BC548B | 4H13040937 | | R710 | Metal Film, 2.21K, 1%, ½W | 5H11654409 | TS451 | NPN Silicon, BC548 | | # ELECTRICAL REPLACEMENT PARTS LIST (Con't) | REF. | DESCRIPTION | PART NO. | |--|--|--| | TS452
TS455
TS456 | NPN Silicon,BC639
NPN Silicon,BC546
PNP Silicon,BS568
MISCELLANEOUS | 4H13041053
4H13041001
5H13044247 | | RE402
S404
S405
S406
VL408
VL409
VL410 | Relay
Speaker (Woofer) AD10100/MFB4
Speaker (Mid-Range) AD0210/SQ8
Speaker (Tweeter) AD0160/T8
Fuse, 3 Amp, Slow Blow
Fuse, 1.5 Amp, Slow Blow
Fuse, 6.25 Amp, Slow Blow | 4H28060437
4H24060077
4H24050095
4H24070004
4H25330047
4H25330046
5H25354016 | | REF. | DESCRIPTION | PART NO. | |------|--|------------| | | Mica Insulator f/TS432a & TS432b | | | | (2 used)
Mica Insulator f/TS444a & TS444b | 5H46690433 | | | (2 used) | 4H25540112 | | | Insulator Bushing f/TS432a, TS432b, | | | | TS444a, & TS444b (6 used)
8 Pin Socket | 4H53251043 | | | 8 Pin Plug | 4H26750221 | | | Fuse Holder (3 used) | 4H26450081 | | | AC Inlet (Interlock) | 4H25640048 | | | | 4H26520062 | | | Jack Assembly (Input/Output) | 4H26740222 | | | AC Outlet | 4H26730255 | | | Disc Cam f/SK-E-1V | 4H53260643 | | | Acoustic Gasket f/S404 | 4H53280644 | | DESCRIPTION | ILLUSTRATION | PART NO. | |----------------|--------------|------------| | Stereo Cable | | 4H32120344 | | Adapter Cable | | 4H32120331 | | AC Power Cable | | 4H32110092 | Figure 12, Cable Chart