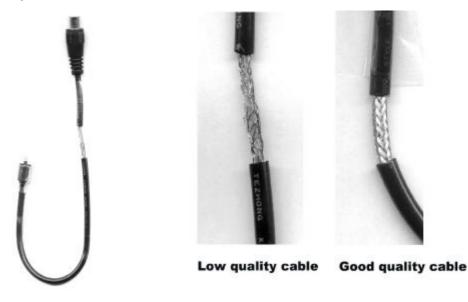


SERVICE MANUAL

CTM5930S 59 cm CTV


CTM5930SERV

Effective: MAY 2000

MODEL:CT-M5930S, CT-M6828S, CT-F683PROBLEM:RF Interference

File: CTM5830 6828 683 rf interf tb.doc

Some units of the first production lot for the models of reference have been supplied with a low quality RF lead from the RF connector in the back panel to the tuner input. Those units may display diagonal interference lines on the picture mainly in VHF bands.

Note that the braid of the good quality cable is very tight and totally covers the internal wire.

Instructions

Replaced the faulty RF cable assembly using the part number 40252200111.

Regards,

MODEL:CT-F683, CT-M6828S, CT-M5930PROBLEM:I²C Mitsubishi chassis. Service Mode adjustments

File: CT-F683 CT-M6828 5930 RC tb.doc

The following information applies to all Great Wall models using I²C Mitsubishi technology. A special type of remote control is necessary to access Service Mode adjustments, please refer to the figure.

Accessing Service Mode

- 1- Press first button on the left of the **FACTORY ON** row (Button 1). The word **Key** is visible on the screen.
- 2- Press **FACTORY** button (Button 2). The first page of factory adjustments will be displayed.
- 3- Navigate between parameters and different pages using UP and DOWN buttons. Direct access to frequently used parameters is available from dedicated buttons, for example EW WIDTH, V AMPL, etc.
- 4- Adjust parameter values using VALUE+ and VALUE -.

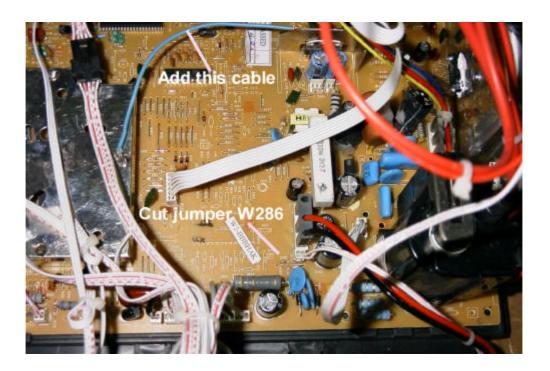
Leaving Service Mode

- 1- Press first button on the left of the **FACTORY ON** row (Button 1). The work **Key** is visible on the screen.
- 2- Press **STANDBY** button.
- 3- Turn **POWER** off from the front panel switch for at least 15 seconds.

Note:

The final version of remote control may be slightly different from the one used to prepare this bulletin.

Regards,


MODEL: CT-M6828S CT-F683 CT-M5930S PROBLEM: Audio noise

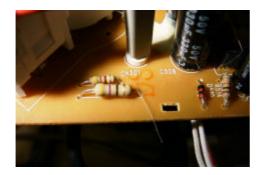
File: CT M6828S M5930S F683 noise tb.doc

A humming noise is audible at low volume from the speakers and particularly from the headphone output (when available). The source of this noise is the vertical deflection circuit.

Instructions

- 1- Delete the jumper W286 on the main PCB next to CN111 in the fly-back transformer area.
- 2- Add a cable between the IF shielding can and the heat sink for the audio output IC.

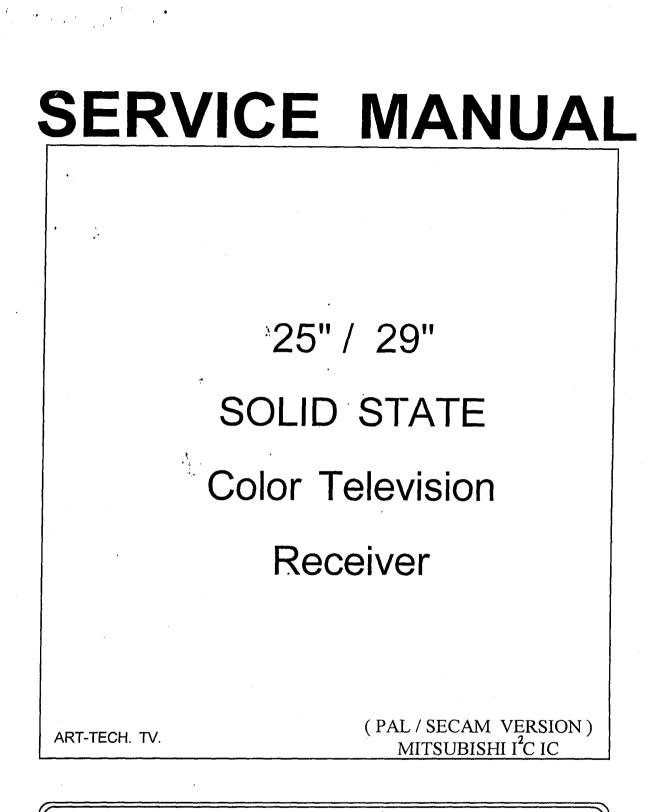
Regards,


MODEL:CT-M6828S, CT-M5930 and CT-F683PROBLEM:Incorrect resistor type

File: CT-M6828S m oxide.doc

An incorrect resistor type has been fitted in position **R504** of the neck board in some units. A carbon film resistor having a light brown color body and mounted on the surface of the PCB can eventually ignite and burn the board.

Instructions


Replace the carbon film resistor in location **R504** with a metal oxide type. Separate the new resistor from the surface of the PCB by approximately 10 mm.

Wrong type Carbon film resistor PN: 11347020512 47 Ohm, ½ W

Correct type Metal oxide resistor PN: 11347020575 47 Ohm, ½ W

This manual is the latest at the time of printing, and does not include the modification which may be made after the printing, by the constant improvment of product.

 Document : <u>SM - 37PM</u>
 Date : ______
 Approved by : ______

 (Sunny Cheung)
 (Sunny Cheung)

 Checked by : ______
 (HO CHI KEUNG)

D-1-2000 26.

SPECIFICATION

•...

SUPPLY VOLTAGE : AC220V 50Hz ≥ + 10% / -20%

	····-	·····	·····	·····						
SYSTEM :	PAL-1/1	PAL - BG	PAL - I (UK)	PAL - SECAM - BG / DK	PAL - SECAM - BG / DK (HYPER)	PAL - BG (HYPER)	PAL - BG (CATV)	SECAM - L	L'	
CHANNEL L - VHF : H - VHF : UHF :	4 - 13 21 - 69	2 - 4 5 -12 21 - 69	21 -69	1 - 5 6 - 12 21 - 69	1 - 5 6 - 12 21 - 69	E2 - S10 ^{***} E5 - S41 E21 - E69	E2 - S2 E5 - S20 E21 - E69	1 - Q 21 - 69	FB - FC	CH CH CH
VIF FREQUENCY :	38.9	38.9	39.5	38.0	38.9	38.9	38.9	38.9	32.7	MHz
SIF FREQUENCY :	32.9	33.4	33.5	31.5 32.5	32.4 33.4	33.4	33.4	32.4	39.2	MHz
CHROMA IF FREQUENCY :	34.47	34.47	35.07	33.57 33.57	34.47 34.47	34.47	34.47	34.47		MHz
INTER-CARRIER FREQUENCY :	6.0	5.5	6	6.5 5.5	5.5 6.5	5.5	5.5	6.5	6.5	MHz
SCANNING HORIZONTAL : VERTICAL :					15625 LINE 50 Hz			L		
ANTENNA INPUT IMPEDANCE :					75 OHM					
CRT :	<u> </u>				25" 29"					

ITEMS OF MEASUREMENT				STANDARD	UNIT
VIDEO SENS. AT S/N 30db L - VHF				<u><</u> 57	dbuv
- H - VHF				<u>≤</u> 57	dbuv
- UHF				<u>≤</u> 60	dbuv
SOUND SENS. AT S/N 30db L - VHF				<u>≤ 42</u>	dbuv
H - VHF UHF				<u><</u> 42 ≤ 48	dbuv dbuv
AGC CHARACTER				<u>≥</u> 60	db
·				_	
SELECTIVITY -1.5 MHz + 8 MHz				<u>≥</u> 35 <u>≥</u> 40	db db
COLOR SENS.				<u>≤</u> 45	dbuv
COLOR LOCK - IN RANGE	λ			<u>≥ +</u> 300	Hz
VERTICAL LOCK - IN RANGE				≥6	Hz
HORIZONTAL LOCK - IN RANGE			• ·	<u>></u> 400	Hz
MAX BRIGHTNESS				<u>≥</u> 100	cd/m2
MAX OUTPUT POWER				<u>≥</u> 4.5	W
OUTPUT POWER AT 10% THD				<u>≥</u> 3.5	W
BUZZ				<u>≤</u> -40	db
AFC RANGE				≥ +1 ≥ -0.5	MHz MHz
MIN. VOL HUM				<u>≤</u> 20	mV
RESOLUTION HORIZONTAL VERTICAL				<u>≥</u> 300 ≥ 400	LINES LINES
				_	=
LINEARITY DISTORTION VERTICAL HORIZONTAL				≤ 10 ≤ 10	% %
RASTER DISTORTION				≤5	%
REMOTE CONTROL DISTANCE ANGLE				≥5 <u>≥ +</u> 15	METER DEGREE
POWER CONSUMPTION (AT NORMAL O POWER CONSUMPTION (AT MAX. CON	CONDITION) DITION)			<u>≤</u> 120 <u>≤</u> 150	WATTS WATTS
	A "B"			≤ 0.4 ≤ 0.8	%
(see	fig.1)	а ў		⊢ н	<u> </u>
	•	.			
					A
VIDEO INPUT LEVEL : 1.0V P-P ± 3dB AUDIO INPUT LEVEL : 0.5V RMS ± 3dB			Fig.1		
AUDIO HAFOT LEVEL . 0.04 MAIO - 30D				•+++	

•.

•

SM - 37PM P. 2

Þ

ALIGNMENT INSTRUCTION

I. PLEASE READ BEFORE ATTEMPTING SERVICE

- 1. Never disconnect any leads while receiver is in operation.
- 2. Disconnect all power before attempting any repairs.
- 3. Do not short any portion of the circuit while power is on.
- 4. For safety reasons, all parts replaced should be identical, (for parts and part numbers see parts list).
- 5. Before alignment the set must be pre-heated for 30 minutes or more and erase magnetism thoroughly from CRT front chassis frame by erase coil. (Except IF, SYNC, COLOR, SECAM, B+, SOUND)

II. TEST EQUIPMENT

- 1. Colour Bar, Dot, Cross Hatch Generator
- 2. DC Power Supply

- 3. Oscilloscope
- 4. Vacuum Tube Voltmeter
- 5. Volt Ohmmeter

- 6. High Voltage Meter
- 7. Ampere Meter (0.5 Class, DC 3mA Max)
- 8. Demagentizing Coil
- 9. Philips Pattern Generator
- 10. High Pot Tester

III. FACTORY ADJUSTMENT : See table 1-4

- 1. Press REMOTE FACTORY ON button.
- 2. Press REMOTE FACTORY button.
- 3. Press REMOTE UP or DOWN button select item.
- 4. Press REMOTE value (+) (-) button, adjust the valae.
- 5. REMOTE DIALOG CENTRE button can tun off factory mode fanction.

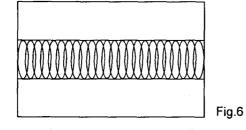
.

REMARK : NO this factory on Normal remote control .

IV.B+ ADJUSTMENT

- 1. Connect a digital voltmeter between the W234 and Ground.
- 2. Press REMOTE Picture button.
- 3. Press REMOTE UP/DOWN and value (-) button set Brightness, contrast, color to minimum.
- 4. Adjust Screen Volume on FBT Until the picture can just been seen.
- 5. Adjust VR901 and obtain a reading of 143V ±1V (DC).

V. AGC ALIGNMENT


- 1. Receive CH69 (UHF) and input field strength. (60dB in put signal)
- 2. Connect a digital voltmeter between the TUNER AGC TERMINAL and Ground.
- 3. Press REMOTE AGC button.
- 4. Press REMOTE value (+) (-) button adjust value to (0) and then adjust AGC take over value obtaill drop down 0.4V. (DC)
- REMARK: (1/ The drop down voltage should be more than and tends to 0.4V)

(2/ No observable noise can be seen)

VI. SOUND TRACKING ALIGNMENT

1. Receive a gray scale pattern.

- 2. Connect a oscilloscope and monitor IC109 PIN 15 and Ground.
- 3. Adjust T101 to obtain the waveform Fig.6.

Remark: All frequency of Marker points are ±0.2% tolerance.

, ,

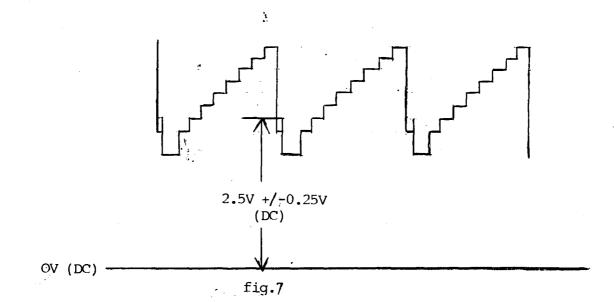
VII. EAST - WEST CORR ECTION ADJUSTMENT

- 1) Receive a crossnatch and center cross pattem.
- 2) Set the Brightness, conthast to middle position.
- Press REMOTE EW-Par/wid, EW-trap button, Press REMOTE VALAE (+) (-) button adjust Value to mormal regular picture.
- 4) Press REMOTE WE-width batton, Press REMOTE value (+) (-) button adjust value to proper horizontal width (90% ± 2%)

VIII. HORIZONTAL SHIFT ADJUSTMENT

- 1. Receive Monoscope Pattern input signal 70dB ±10dB.
- 2. Press REMOTE H-shirt button.
- Press REMOTE value (+) (-) button adjust value to obtain the picture at center ±2mm. (Specification show in Fig.8)

IX. VERTICAL LINEARTY ADJUSTMENT


- 1) Receive a crossnatch and center cross pattem.
- 2) Set the Brightness, conthast to middle position.
- 3) Press REMOTE V-Slope,S-Correction button,Press REMOTE Velue (+) (-) button adjust value to normal regutor picture.
- Press REMOTE V-Shift button, Press REMOTE Value (+) (-) button adjust value to obtain the picture at center.

X. VERTICAL AMPL ADJUSTMENT

- 1. Receive the Monoscope Pattern.
- 2. Press REMOTE V-ampl button.
- 3. Press REMOTE value (+) (-) button adjust value to obtaina a normal picture.

XI. WHITE BALANCE ALIGNMENT STEP

- (Degauss the picture by degaussing coil if necessary)
- 1. Receive a grey scale pattern.
- 2. connect a oscilloscope and monitor CN101 pin"3" and ground
- 3. Press REMOTE picture button.
- 4. Press REMOTE UP/DOWN and value (-) button set the brightness, contrast, to middte position.
- 5. Ajust screen volume on FBT unit the waveform to 2.5V +/-0.25V DC See fig.7
- 6. Press REMOTE sub bri button.
- 7. Press REMOTE value (+) (-) button adjust value to (18).
- 8. Receive a black and white pattorn,
- 9. Press REMOTE FACTORY button,
- 10 Press REMOTE UP/Down and value (+) (-) button adjust blue str value to (0).
- 11 Press REMOTE picture button.
- 12 Press REMOTE up /Down and Value (+) (-) button sot the brightness and color to minimun position.contrast to MAX position
- 13. Press REMOTE pt r.g.b.button
- 14. Press REMOTE up/Down and volue (+) (-) button adjust the white balance $(9300^{\circ}K)$

\$ ¹

.

÷

XII.SUB - BRIGHTNESS ALIGNMENT

1. Receive a grey scale pattern.

2. Press REMOTE picture button,.

3. Press REMOTE UP/DOWN and value (-) button set

the brightness, contrast to minimun.

4. Press REMOTE sub bright button.

5. Press REMOTE value (+) (-) button adjust value to

brightness bar can just be seen.

N.

XIII. FOCUS ALIGNMENT

1) Set the Brightness and Contrast to middle position.

2) Receive a monoscope pattern.

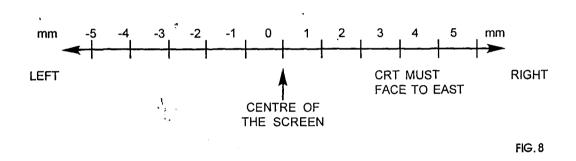
3) Adjust focus control to obtain sharpest picture.

XIV. HIGH POT TESTING

1) Short the L-pole and N-pole of AC line cord.

2) Switch on the power switch of the TV Set.

*3) Connect The High Pot Tester (-) to L and N pole, (+) to the METAL PART of CABINET.


CONDITION SAFETY STD.	TEST SYANDARD	TEST STANDARN FOR PRODUCTION
YDE, SAA	3.0KV 10mA / 1MIN	≥3.5 KV ≤10mA / ≥10 SEC.
BS	4.0KV 10mA / 1MIN	≥4.0 KV ≤10mA / ≥10 SEC.
CHINA STANDARD	3.0KV 10mA / 1MIN	≥3.3 KV ≤ 5mA / ≥ 6 SEC.
UL	1.0KV 5mA / 1MIN	≥1.25KV ≤ 5mA / ≥ 1 SEC.

Remark:

1) If no other specify, the strength of input signal should be 70dB ±10dB.

2) The High Pot Tester can have $\leq \pm 5\%$ tolerance.

DISTRICT	CENTRE (mm) POSITION	LIMIT (mm)	SCANNING SIZE (%)	SCANNING SIZE LIMIT (%)
THAILAND	-1	0 ~ -2	90	88 ~ 92
FRANCE	+3	0 ~ +5	90	88 ~ 94
GERMANY	+3	0 ~ +5	90	90 ~ 95
*GROUP A	-2	-5 ~ -1	90	88 ~ 94
*GROUP B	0	-2 ~ +2	90	88 ~ 94
*GROUP C	+3	0 ~ +5	90	88 ~ 94

à

REMARK: 1. SUITABLE FOR 14" OR ABOVE TV.

2. Adjust the centre position must take the upper side of monoscope pattern for standard.

3. Group A: AUSTRALIA, NEW ZEALAND, TAHITI.

4. Group B : HONG KONG, CHINA, AMERICA, CANADA, MALAYSIA, MEXICO.

5. Group C: ENGLAND, ITALY, GERMANY, RUSSIA, SWITZERLAND,

4

JUGOSLAVIA, SPANISH.

If the above countries are not include, please consult to Engineering Dept.

	ITEM	REF VALUE	REMARK
ľ	: POWER	Р	O = TV Status S = Power Status P = Last power status
2	TDA884X	3	1=PAL/NTSC.W/O EW 3=PAL/NTSC.W/EW 2=PAL/SECAM/NTSC.W/O EW 4=PAL/SECAM/NTSC,W/EW
3	S.SYS	. <u>)</u> 6	1=DK/I 4=BG/DK/I/M 2=BG/DK 5=I 3=DK/I/M 6=BG
4	LOGO	1	1=NIL 2=TEAC 3=HAIER
5	CTI	0	0 = OFF 1 = ON
6	OSD.	0	0 = NO BACKGAN 1 = W/BACKGAN
7	WOOFER	0	0 = OFF 1 = ON
8	TELETEXT	0	0 = OFF 1 = ON
9	BLUE STR	1	0 = OFF 1 = ON
10	AV NO	1	1 = TV/AV1/AV2/AV3/S-VHS 2 = TV/AV1/AV2/S-VHS 3 = TV/AV1/AV2
11	KARAOKE	0	0 = OFF 1 = ON
12	BBE	0	$ \begin{array}{rcl} 0 &= & \text{OFF} \\ \cdot & 1 &= & \text{ON} \\ \end{array} $
13	HALF SCR	0	0 = Picture 1 = HACF Picture

	ITEM	VALUE ADJUST RANGE	REF VALUE	REMARK
		CO-ff	dd	For CTI ON TV set Adjustmant
1	H-SHIFT	80-Bf	a3	For CTI OFF TV set Adjustmant
2	V-SLOPE	0-3f	2b	For TV set Adjustmant
3	V-AMPL	40-80	68.	For TV set Adjustment
4	S-CORRECTION	80-Bf	86	For TV set Adjustmant
5	V-SHIFT	0-3f	18-	For TV set Adjustment
6	EW-WIDTH	0-3f	36	For TV set Adjustmant
 . 7.	EW-PAR	0-3f	16	For TV set Adjustment
8	EW-CORNER	0-3f	0	For TV set Adjustmant
9	EW-TRAP	0-3f	2a	For TV set Adjustment
10	CONTROL 0		3	NON-Adjustable Value
11	CONTROL 1		90	NON-Adjustable Value
12	AGC	0-3f	12*	For TV set Adjust mant
13	PLL		40	For TV Set IF Frequencg 40 = 38.90 MHz 60 = 38.00 MHz CI = 33.90 MHz

 v_{f}

•

4

•

÷

		ITEM	VALUE ADJUST RANGE	REF VALUE	REMARK
	. 1	CONTROL 2		8	NON-Adjustarle value
	2	CONTROL 3		6	NON-Adjustarle value
	3	CONTROL 4		e9 .	CTI ON Set 9 CTI OFF set e9
	4	HOTEL LOCK		0	$\begin{array}{rcl} 0 &= & \text{OFF} \\ 1 &= & \text{ON} \end{array}$
	5	SaB SHP	00-31	00	Sab shp seting
	6	СОМВ		0	$\begin{array}{rcl} 0 &= & \text{OFF} \\ 1 &= & \text{ON} \end{array}$
:	7,	NICAM		0	0= NICAM /G.ST 2= G.ST l= NICAM
	8	CCD		0	0= OFF 1= ON
					•
				•	;
• -					

· · · ·

ý

)

SM - 37PM P. 9

ŗ

÷

•

	ITEM	VALUE ADJUST RANGE	REF VALUE	REMARK
1	PT R	0-3f	9	For TV Set Adjustmant
2	PT G	0-3f	6	For TV Set Adjustmant
3	PT B	0-3f	9.	For TV Set Adjustmant
4	WHITE BAL		0	0 = Picture 1 = H-LINE
5	SUB BRI .	00-31	18	SUb bri Sating
			•	

TR	B.V	C.V	EV					T
LOCATION	0.7		E.V					
Q101	<u> </u>	0	1.6	ļ				
Q102 ·	4.9	0.3	4.9					
Q103	4.9	0.15	4.9					
Q104	4.3	4.9	4.9		· · · · · · · · · · · · · · · · · · ·		 	
Q105	3.2	0	3.2					
Q106	2.4	7.9	1.7					
Q108	2.8	6.7	2.1					
Q109	1	7	0, 3	ļ	ļ	 	·	
Q110	0.7	0	1.4	·				
Q111	7.7	0	7.9					
Q113	4.3	4.8	4.9					
Q114	4.9	.4.9	4.6					
Q115	0	4.9	0					· <u> </u>
Q116	4.8	0	4.9					· · · · ·
Q117	0.7	0.5	0					
Q118	0	8.1	0					
Q119	0.6	0	0					
Q301	2.8	2.8	2.8					
Q401	13.6	0	14.3				{	
Q402	0.6	13.8	0					
Q403	0	115	0					
Q404	0.4	76 [.]	0					
Q405	21.6	21	21					
Q701	0	10	0					
Q909	-2.35	293	0	•				
Q910	0	8.6	0					
Q911	10.2	0	1.3					
Q912	8.9	14	8.2					
Q913	15.3	15.3	14.6					
Q914	14.7	15.3	15.3					37PM P. 11

. ·

• •

SM - 37PM P. 11

÷

8

PIN NO SYMBOL	IC101/V	IC102/V	IC103/V	1C104/V	1C105/V	IC106/V	IC107/V
1	NC	0.7	GND	0	5	GND	NC
2	NC	0.7	NC	0	5	GND	NC
3	NC	0	GND	0	5	GND	GND
4	NC	0	GND	0	5	GND	4.2
5 -	2.6	4.7	4.8	0	5	5	4.2
6	2.1	0	4.8	0	5	5	GND
7	4.3	0.3	4.8	0	5	5	3.9
8	4.3	NC	4.5	0	5	5	2.6
9	6.6	NC		0	GND		0
10	1.1	4.5	1	0	GND		2.3
11 .	3.7	NC	1	0	GND		2.3
12	7.8	NC NC	1	0	GND		2.3
13	3.5	NC	1	0	GND		GND
14	GND	4.7	++	0	5		GND
15	NC NC	NC NC	╂━━━━━╋	0	5		4.9
the second s					5		4.9
16	3.9	4.1	<u> </u>	0			
17	3.3	0		- <u> </u>	GND		GND
18	6.5	GND	<u>}</u>	0	GND	<u>├ </u>	1.9
19	3.1	2.2	+	0	GND		1.9
20	2.7	1.8	<u> </u>	. 5	5	ļ	NC
21	2.5	GND	<u> </u>		GND		NC
22	3.6	4.8	<u></u>	· · · · · · · · · · · · · · · · · · ·	GND		NC
23	3.5	3.5			2.4		NC
24	3.5	3.5			GND		NC
25	3.5	4.6			2.1		NC
26	0.2	NC			2.5		NC
27	2.1	NC			0		NC
28	2.1	NC	<u> </u> -		GND		GND
29	2.4	4.7			NC		2.3
30	2.4	4.7	<u> </u>		5		GND
31	2.4	4.3			2.5		2.3
32	2.4	4.3		+	0		2.3
33		4.7	<u>├</u>		0		NC
33	4.2	4.7	<u>├</u>		0		NC
the second s			<u>├────</u> ┼		0		GND
35	2.5	NC	+		0.8	╾┨╾╌╼╌╌╼╴╌┼╴	NC
	4.3	NC	<u>├</u>				NC
	7.9	4.7	├		0.8	_ 	1
38	1.9	0			5		4.4
39	4.9	0	ļ		5	╾┟─┈╌┲─╌─┼╸	
40	0.3	0	<u> </u>		GND		GND
41	0.7	0	ļ		2.4		GND
42	4-4	0	┟────┼	- <u> </u>	2.7		GND
43	3.8	 	ļ		0		GND
44	GND	<u>↓</u>		+	5		GND
45	0.5	l_		<u></u>	GND		GND
46	2.4	<u> </u>	┟┣		GND		2.2
47	2.6		<u> </u>		GND		2.3
48	4.6				GND		2.3
49	4.6			· · · · · · · · · · · · · · · · · · ·	4.3		GND
50	2.2			· · ·	4.3		GND
51	3.8	[5		NC
52	3.8				5		NC
53	3.4	<u>├</u>		ji ji			2.4
54	4.6	<u> </u>	•				2.4
55	2.9		<u> </u>				2.4
		┟	┟╼╾╾╸╼┼╸	1			0
56	3.7	┟╾╼╾╴╴╴╴╴╴┼╾╴	┟╌╾╌╾╄╴	+			NC
57	_ 	┞╾╍╌╺╌╌╸┼╾	╞╼╾╾╾╼┼╸	<u> </u>			NC
58	-┼┼	┟╍╍╍╸╺╸╸╸╸	┟╾╾╾╼╌╸┠╸	┼╌╌╌╌┥			
59	-↓	├	├	┼┤	- 	+	4.8
60							2.3
61							2.3
62							2.4
63	1	[[-				2.4
64		<u>↓ · · · · · · · · · · · · · · · · · · ·</u>	<u></u>	T			4,9

•.

ł

ļ

8

.

• •

. `

•

٠,

SM - 37PM P. 12

IN NO SYMBOL	IC108/V	1C109/V	IC301/V	1C401/V	1C402/V	IC403/V	IC404/V
11	10.5	1.8	0	0.7	14.6	13.7	11.8
2	15.4	2.1	0	8.3	GND	GND	GND
3	10.5	2.5	0	11.5	8	5	GND 5
4	10.4	1.8	4.8	15.6			
5 -	GND	1.8	0.7	8.1			
6	10.4	1.9	GND	GND			
7	21				┉┼╌╎──┈──┼		+
8		1.9	2	44			
	10.5	1.8	1.6	GND			
9	10.5	1.8	1	8.4			
10		3.9	1.2	15.6			
11 •		3.9	GND	1.2			
12		3	4.8	1.2			
13					╶┼╴┼╾╴╍╴╍┼		
		NC	1	7			
14		2.8	4.2				
15		1.8	4.2				
16		2.8	1				
17		NC	. 0				
18		GND	. 0	<u> </u>			1
19	-		<u>↓</u>	┟╌┼╌╌╾	╺╂╌╂╌╌╼╌╌╂	- {	┼╌╍╌┦
19		4.9	ļ		╺┥╌┝────┤┙	_ _	
20		1.8	<u> </u>				
21		4					
22							
23							1 [
24							
25					╶╁╾┼╼──╼┼		
- 25			<u> </u>	<u>_</u>	╶┼╍╌╌╍╴──┼		┦━━━━━┩
26			L				
27							
28							
29							
30					╶┟╴╎╾╶╍╴╺╸╴┼╸	+	1
31					┼┼╌╴╴╴┼		
			ļ		┾┼╾╼╼╌┝	- }	ļļ
32 '							Į
33							
34			,				
35							[[
36							
37					+	+	+
	╺┨╾╼╍╼╍╌┤━╌┤				╺╂╼╅╶┉╌╼╌╼╸╌╾┠╴		<u>├───</u>
38			L				l
39							
40							
41							1 1
42					+-+		1
	┥──┼╶┤						<u> </u> †
43			┟─────┤		┼╌┠╌╌╌╼╌┠╸	┼╸╸╸╸╄╸	┨╼───┼
44					┟╾┟╾╌╌╴╸╸┤╸	╉╾╼╾╉╸	┟────┤
45					<u>↓</u>		
46							
47							I — T
48					1-1		
	+	<u> </u>	┝		+++	++-	<u>├</u> ───┼
49	┦╾╾╼┼━┦		╞╼╾╼╴╼┤		╅╍╁╍╾╍╍╌┛╌╉╸	┟╾╺╾╼┼╾	├
50					╉╌┟╼╼╼╼╌┼╸	╶╁╾╍╼╾╂╾	┟
51						. _	
52				. :		. <u> </u>	ļl
53				<i>à</i>			T
55	+					1	
	╶╂╾╼╾╼╌╏╼┨			- 1	<u> - </u>	+	
	╶┟────┤─┤		├		╆╋	++-	┟╍╍╌╍╌╌┤╌
56	╷┟╴┈╴╴╴┥╺┥				┟╌┟╴╶╴╴╸┥╸	<u>↓</u>	
57					┤┤┈┈╸┥╸	<u></u>	 -
58						<u></u>	l
59							
	╶╊╌╸╴╾╸┨╼┤		├ <u>──</u>			1	
00					┟┼╌╌╾╂╴	<u>.</u>	├
61					<u> </u>	<u> </u>	
62	1						
63	+						
00	╞────┤──┤			_ <u>}</u>	<u>+</u> {		┝╼╼───┤╼

٠.

 $\cdot \cdot _{i}$

SM - 37PM P. 13

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PII		•													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.1.	N NO SYMBOL			<u> </u>		Т	IC701/V	T		Т	1	Τ		Τ-	<u></u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1			\vdash		1		+		+-	<u> </u>	┢	· · · · · ·	╀	+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2		3.3		3.8			1				1		┢	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3		3.1		NC		2.9							T	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						NC		2.9							L	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						NC	1_		ļ				_		╞	
8 82 5.7 2.9 9 88 5.7 2.9 10 5.7 2.9 11 5.7 0 12 GRD 0 13 5.7 0 14 5.7 0 15 5.7 2.9 16 5.7 0 17 10 1.47 18 10 0 19 GND 0 20 4.2 0 21 4.2 0 22 10 10 23 10 10 24 5.7 10 25 5.7 10 26 '. NC 10 27 5.7 10 23 10 10 30 4.3 10 31 4.5 10 32 4.3 10 33 4.5 10			_						┨		\downarrow		-		╞	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_			91		5.7	-	2.9	-		-	<u></u>	\vdash		╞	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				82		5.7	_	2.9			-		-		╞	<u> </u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				88		5.1	-	2.9				<u> </u>	+		┢	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							╀		1		+	+	1		┢	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									+		+				+	+
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			H		1	5.7	\uparrow		1		1	1	1	<u>+</u>	T	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	5.7	1-				1	1	1	1	t	1
16 5.7 2.9 1 17 10 $, 147$ 1 18 10 0 1 19 GND 0 1 20 4.2 0 1 21 4.2 0 1 22 10 1 1 23 10 1 1 24 5.7 1 1 25 5.7 1 1 26 ', NC 1 1 27 ', S.7 1 1 28 NC 1 1 30 4.3 1 1 31 4.5 1 1 32 4.3 1 1 33 4.5 1 1 34 NC 1 1 36 NC 1 1 37 1 1 1 1 44 1		15						3	Γ		1		1		Γ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		16				5.7			Γ						L	[
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						10		1.47	Ĺ						Ĺ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						10		0					<u> </u>	ļ	L	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ŀ				<u> </u>	0			_	Ļ			L	ļ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						4.2		0 .	<u> </u>			ļ			L	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						4.2					_	<u> </u>	_		_	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					_										┝	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-			10	\vdash					<u> </u>			┝─┘	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											\vdash		┢		\vdash	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											-	<u></u>				
28 NC Image: state st					_	1.5 7					┢		┢		\vdash	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						NC						· · · · · · · · · · · · · · · · · · ·				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															\square	
32 4.3 <		30				4.3										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															Ц	
34 NC NC Image: state sta		32				4.3					Ì	<u>}</u>			\square	
35 NC NC Image: state			_					······								
36 NC Image: Constraint of the second secon			-				-				-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			_		_						\vdash				-	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			+			NC									-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		30	╉							••••					-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		40	-+													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						_									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																<u> </u>
44 1 1 1 1 45 1 1 1 1 46 1 1 1 1 47 1 1 1 1 48 1 1 1 1 49 1 1 1 1 50 1 1 1 1 51 1 1 1 1 52 1 1 1 1 53 1 1 1 1 54 1 1 1 1 55 1 1 1 1 56 1 1 1 1 57 1 1 1 1 58 1 1 1 1 60 1 1 1 1		43													┝━┥	İ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											\square	f	_		\dashv	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							_								_	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			_				_								+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-+		-	······			\square						+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			+						\square						-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>49</u> 50	+		-		-		+	·					+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		51 '	+		-				\neg						1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			+							;						
54			-					k	_							
55															_	
56															_	
57		56													\downarrow	
59															4	
60 61 61					- 1				_						-	
61		58	_		-+		-	1				· ·				
		58 59					_		-+				_		+	
		58 59 60					_									

SM - 37PM P. 14

۰.

 $\omega_1 < \delta_2 = -\delta_2 < \delta_1 < \delta_2$

۰,

PROGRAM ID : TVSTDCS⁻ Print Date : 15/05/00 Page Number : 1

<< 6.0.M. TV STANDARD PRICE LIST FOR CUSTOMER >> - CURRENCY (USD : Rate 7.7500)

PRODUCT CODE : 825BT1-370002-TV DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I.O/E.PH/SV (I*C)220P.

ASSEMBLY NUMBER	DESCRIPTION
155-R83303-02-05	HANDSET ASS'Y R833 W/O TXT(MITSUBISH I*C
180-825600-01-MP	COM PART FOR 8258 MECH ASS'Y
180-825BT1-37-02	N-COM ASS'Y (PAL/BG/SC/NP/CTI/G.ST/F.AV
180-825BT1-37-CP	COM ASS'Y (PAL/BG/SC/NP/G.ST/CTI/F.AV IN

** THIS SPARE LIST IS MADE FOR TECHNICAL / MAINTENANCE REFERENCE ONLY **

Print Date : 15/05/00 PRODUCT CODE : 825BT1-370002-TV

DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (IPC)220P. Page Number : 2

Component Part	Description / Location	Unit Sub		Unit Subs		Quantity Required	Unit Price	Amount.
*** ASSEMBLY	: 155-R83303-02-05 HANDSET ASS'Y R833 W/O TXT(MITSUBISH IZC							
107-800455-4G	RESONATOR 455 KHZ ET455Z PO TUNG CF701	PC	۵	1.00000	0.0687	0.068700		
113-109005-17	CARBON FILM RESISTOR 1 OHM 1/16W +-5%	PC	0	2.00000	0.0000	0.000000		
113-221005-17	CARBON FILM RESISTOR 220 OHM 1/16W +-5%	PC	٥	1.00000	0.0017	0.001700		
123-151350-93	CERAMIC CAP. 150 PF 50V +-10% (NPO) C701,702	PC	0	2.00000	0.0276	0.055200		
127-105072-06	ELECT CAP. 1 MFD 50V +-20% {TAPING TYPE}	PC	Õ	1.00000	0.0091	0.009100		
130-134148-01	SILICON DIODE IN4148 D702-704	PC	Ŏ	3.00000	0.0070	0.021000		
130-600101-09	INFRARED EMITTER EL-1L1 KODENS HI "GUANG ZHOU XIONGGUANG"	PC	Ö	1.00000	0.0945	0.094500		
131-231815-04	RANSISTOR 2SC1815 TOSHIBA	PC	0	1.00000	0.0234	0.023400		
133-803428-12	2.1.C. M34280M1 MITSUBISHI 1C701	PC	Õ	1.00000	0.4070	0.407000		
172-726000-99	W701	М	0	0.11000	0.0012	0.000132		
190-R83301-02	REMOTE P.C.B. (270499 REV.1)	PC	٥	1.00000	0.3832	0.383200		
514-200407-10	SELF-TAPPING SCREW 2 X 7 B/T (HARDEN) FOR HANDSET	PC	0	1.00000	0.0016	0.001600		
774-002001-00	BATTERY SPRING +VE & -VE	PC	Ö	1.00000	0.0271	0.027100		
774-R83301-00	BATTERY SPRING (-VE)	PC	0	1.00000	0.0000	0.000000		
774-R83302-00	BATTERY SPRING (+VE)	PC	0	1.00000	0.0000	0.000000		
810-041104-13	POLYBAG 4" X 11" X 0.04MM W/RE-CYCLING MARK	PC	0	1.00000	0.0000	0.000000		
849-R83301-08	RUBBER KEY PAD - ENG STD {FOR MTSUBISHI IZC}	PC	Ö	1.00000	0.0000	0.000000		
900-R83301-46	R/TOP CAB-ENG STD/M.BLK SILVER 877C (FOR MITSUBISH IZC)	PC	0	1.00000	0.0000	0.000000		
902-R83301-01	HANDSET REAR CAB - MATT BLK SPARY	PC	Ö	1.00000	0.1563	0.156300		
910-R63301-01	BATTERY DOOR - MATT BLACK	PC	0	1.00000	0.0766	0.076600		
9 19-R63 310-15	REMOTE TOP DOOR - TEAC DESIGN (CT-M5930S)	PC	0	1.00000	0.0000	0.00000		

ASSB PRICE : 1.325532

Print Date : 15/05/00 PRODUCT CODE : 8258T1-370002-TV

DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P. Page Number : 3

Component Part	Description / Location		Subs	Quantity Required	Unit Price	Amount
	: 180-825800-01-MP COM PART FOR 8258 MECH ASS'Y					
509-305010-00	MACHINE SCREW 3 X 10 KM (BLACK)	PC	0	2.00000	0.0015	0.003000
614 JAAA406. 1A	JACK PLATE MTG. SELF-TAPPING SCREW 4 X 25 B/T (HARDEN)	PC	0	10.00000	0.0058	0.058000
014-400420-10	FOR CABINET MTG.	۳۵.	v	10.000	0.0000	4.00000
514-400435-10	SELF-TAPPING SCREW 4 X 35 B/T (HARDEN)	99	õ	3.00000	0.0078	0.023400
	FOR CAB.MTG.(BOTTOM)					
515-303408-10	SELF-TAPPING SCREW 3 X 8 W/B/T (HARDEN)	PC	0	1.00000	0.0028	0.002800
515-303410-10	FOR AC LINE CORD SELF-TAPPING SCREW 3 X 10 W/B/T (HARDEN)	PC	0	14.00000	0.0029	0.040600
	6-POWER BOARD, 8-SPK.MTG.	1.00		*		
515-303410-10	SELF-TAPPING SCREW 3 X 10 W/B/T (HARDEN)	PC	Ö	6.00000	0.0029	0.017400
	2 FOR FUNCTION PCB.2 FOR REMOTE SENSOR PCB					
515-303410-10	SELF-TAPPING SCREW 3 X 10 W/B/T (HARDEN)	PC	0	0.00000	0.0029	0.000000
K1 K	1 FOR VOLUME KNOB SELF-TAPPING SCREW 3 X 10 W/B/T (HARDEN)	PC	0	0.00000	0.0029	0.000000
010-000410-10	1 FOR FRONT CABINET & LENS	10	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V • V 0 4 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
515-303412-10	SELF-TAPPING SCREW 3 X 12 W/B/T (HARDEN)	PC	0	13.00000	0.0034	0.044200
	FOR MAIN PCB					
524-962501-00	CRT MTG. SCREW 7 X 25 VP (HARDEN)	PC	Ő	4.00000	0.0619	0.247600
400	FOR GOLDSTAR.SAMSUNG CRT FELT L240 X W17 X TO.3MM W/TAPE	PC	0	7.00000	0.0000	0.000000
022-025/01-00	7 FOR FRONT CABINET	۳L	v	/.0000/	0.000	0.000000
622-882802-00	FELT L240 X W17 X TO.5MM W/TAPE	PC	õ	5.00000	0.0271	0.135500
	5 FOR BETWEEN CRT AND FRONT CAB.					
630-238010-00	FIBRE WASHER OD=23 , ID=6 T=1MM	PC	0	4.00000	0.0172	0.068300
	FOR CRT MTG.	~~ ~	a	3 AAAAA	A A4 *** A	a araran
748-206515-00	FOR CRT MTG.	PC	o	4.00000	0.0174	0.069600
777-932501-00	POWER KNOB SPRING IN DIM 10MM X L12MM	PC	Ő	1.00000	0.0062	0.006200
	FOR POWER KNOB					
810-052204-14	POLYBAG 5" X 22" X 0.04MM W/RE-CYCLING MARK {P/O MAT}	PC	0	1.00000	0.0000	0.000000
1072 a 1072 bits bits a 10.00	FOR AC LINE CORD	m /^	~	~ ~~~~	~ ~~~~	n naaaaa
834-230801-00	PRUBBER WASHER OD=23 , ID=8 , T=1.0 FOR CRT MTG.	PC	o	8.00000	0.0000	0.000000
840-051030-11	RUBBER PAD (ONE SIDE W/TAPE)	PC	o	10.00000	0.0000	0.000000
	4 FOR SPEAKER SIDE.6 FOR CRT MTG.					
920-932901-00	P.C.B. MTG. BRACKET	PC	0	1.00000	1.3529	1.352900
929-821801-00		PC	0	1.00000	0.0119	0.011900
	POWER KNOB ADAPTER	PC PC	0	1.00000	0.0119	0.011900
	STUD POST BLACK ABS	PC PC	0 0	6.00000 1.00000	0.0204 0.0170	0.122400 0.017000
	HIGH VOLTAGE CABLE SPACER	PC	õ	3.00000	0.0187	0.056100
	FOR FBT					

ASSB PRICE : 2.289300

Print Date : 15/05/00PRODUCT CODE : 825BT1-370002-TVPage Number : 4DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Requi red		Amount
*** ASSEMBLY	: 180-825BT1-37-02 N-COM ASS'Y (PAL/BG/SC/NP/CTI/G.ST/F.AV					
002-125260-48	25° CRT S/H #A59KYL220X06V (AUSTRIALIA) "LG CHEUNG SHA" #	PC	1	1.00000	105.5148	105.514800
003-131315-0E	TUNER 38.9 MHZ(WSP HYPER BAND) UV1315 PHILIPS (LOW JACK 30MM) TUNER) PC	o	1.00000	4.8235	4.823500
008-600251-05	DEGAUSSING COIL GOT (W/FIVE LAYERS OF TAPE) # L903	PC	2	1.00000	1.4458	1.445800
105-109103-08	FIXED INDUCTIVE COIL 1.00H +-10% (WITTIS) (L601.602 FOR FRONT AV BOARD)	PC	0	2.00000	0.0164	0.036800
107-731500-01	SAW FILTER 31.5 MHZ B5308 "NANYANG"	PC	0	1.00000	0.0000	0.000000
107-738916-01	SAW102 SAW FILTER 38.9 MHZ B5316 "NANYANG"	PC	0	1.00000	0.0000	0.000000
113-101005-17	SAW101 CARBON FILM RESISTOR 100 OHM 1/16W +-5%	PC	0	3.00000	0.0016	0.004800
113-103005-17	R330,331,332 CARBON FILM RESISTOR 10K OHM 1/16W +-5%	PC	0	1.00000	0.0000	0.000000
113-122005-17	R336 CARBON FILM RESISTOR 1.2K OHM 1/16W +-5%	PC	0	1.00000	0.0017	0.001700
113-220305-75	R334 METAL OXIDE FILM RESISTOR 22 OHM 1W +-5%	PC	0	1.00000	0.0000	0.000000
113-221005-17	R337 CARBON FILM RESISTOR 220 OHM 1/16W +-5%	PC	0	1.00000	0.0017	0.001700
113-330005-17	R335 CARBON FILM RESISTOR 33 OHM 1/16W +-5%	PC	0	2.00000	0.0021	0.004200
113-393005-17	(R601,602 FOR FRONT AV BOARD) CARBON FILM RESISTOR 39K OHM 1/16W +-5%	PC	o	1.00000	0.0020	0.002000
123-101350-60	R333 CERAMIC CAP. 100 PF 50V +-10% (SL TYPE) "SMART GOOD"	PC	0	2.00000	0.0083	0.016600
123-103370-90	C333,334 CERAMIC CAP. 0.01 MFD 50V +80 -20%	PC	0	2.00000	0.0081	0.016200
123-104270-90	(C601.602 FOR FRONT AV BOARD) CERAMIC CAP. 0.1 MFD 25V +80 -20%	PC	0	4.00000	0.0295	0.118000
123-271350-60	C335,336,337,338 CERAMIC CAP. 270 PF 50V +-10% (SL TYPE)	PC	0	2.00000	0.0101	0.020200
123-331350-60	C330,331 CERAMIC CAP. 330 PF 50V +-10% (SL TYPE)	PC	0	1.00000	0.0101	0.010100
126-104071-01	C332 MYLAR CAP. 0.1 MFD 50V +-10%	PC	0	1.00000	0.0182	0.018200
126-224071-01	C340 MYLAR CAP 0.22 MFD 50V +-10%	PC	o	1.00000	0.0265	0.026500
127-226042-06	C339 ELECT CAP. 22 MFD 16V +-20% {TAPING TYPE}	PC	0	1.00000	0.0112	0.011200
130-410120-01	C341 ZENER DIODE 12V 1/2W +-5% "TEMIC"	PC	o	1.00000	0.0157	0.015700
	ZD330		_			
	I.C. TDA4565 PHILIPS IC330	PC	0	1.00000	1.5827	1.582700
133-108843-33	I.C. TDA8843 PHILIPS IC101	PC	0	1.00000	7.7629	7.762900

Print Date : 15/05/00

PRODUCT CODE : 8258T1-370002-TV

Page Number : 5 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I2C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Required	Unit Price	Amount
160-102255-27	PIN CONNECTOR 2 PINS PLUG STRAIGHT (UL) (S.H.S) CN333,335,(CN601,602 FOR FRONT AV BOARD)	PC	0	4.00000	0.0075	0.030000
160-104255-23	7 PIN CONNECTOR 4 PINS PLUG (SHS) CN334	PC	0	1.00000	0.0151	0.015100
161-103504-20	HEADPHONE JACK DIA=3.5MM KUNMING=HTJ035-17AB VERTICAL (EP601 FOR FRONT AV BOARD)	PC	0	1.00000	0.2671	0.267100
166-281922-40) SPEAKER 2-1/4" X 5" 8 OHM 10W #YDP-613-28-SP "TCL"	PC	Ô	2.00000	0.6830	1.366000
171-550084-80	7" SAA APP LINE CORD 2-PIN PLUG #	PC	3	0.00000	0.6484	0.000000
171-550084-D0) 84" AC LINE CORD W/SAA APP. 10A 250V #	PC	3	1.00000	0.4355	0.435500
171-550084-01	* SAA APP. LINE CORD W/PLUG E-CUTTING 45MM,15MM PVC HOLDER	PC	3	0.00000	0.4519	0.000000
172-726000-99	BARE WIRE 54MM W279,287,286,269,290,291,292,330	М	o	0.05000	0.0012	0.000060
186-223500-18	9 HI-WATT REGULAR STANDARD 20 R6P VINYL JACKET 1.5V BATTERY PACKED IN GIFT BOX	PC	0	2.00000	0.0484	0.096800
100-20000-2-00	3 FRONT AV & PHONE JACK BOARD (220300)	PC	o	1.00000	0.0658	0.065800
) CTI P.C.B. (020200)	PC	ŏ	1.00000	0.3194	0.319400
) 2 PIN SOCKET ASS'Y L=500MM	PC	ő	1.00000	0.0410	0.041000
	FROM MAIN BOARD CN107 TO FRONT AV IN BOARD	1.00	0			
191-201004-1(2 PIN SOCKET ASS'Y L=500MM PIN '1' TO 'J','2' TO 'H'	PC	0	0.00000	0.0410	0.000000
191-201006-10	2 PIN SOCKET ASS'Y L=700MM CN601 11' TO RIGHT SPK.1+1,12' TO RIGHT SPK.1-"	PC	0	1.00000	0.0482	0.048200
191-201006-10	2 PIN SOCKET ASS'Y L=700MM CN602 11 TO LEFT SPK.5+7,52' TO LEFT SPK.5-7	PC	0	1.00000	0.0482	0.048200
191-201231-10	2 PIN FLAT CABLE L=140MM AWG26 (1 SIDE SOCKET, 1 SIDE PLUG) FROM MAIN PCB CN333 TO CTI PCB CN331 PIN '1'TO'1',	PC	o	1.00000	0.0000	0.000000
191-201231-10	2 PIN FLAT CABLE L=140MM AWG26 (1 SIDE SOCKET, 1 SIDE PLUG)	PC	o	0.00000	0.0000	0.000000
191-201238-1() 2 PIN FLAT CABLE L=240MM #26 (1 SIDE SOCKET, 1 SIDE PLUG)	PC	0	1.00000	0.0000	0.000000
191-201238-10	FROM MAIN PCB CN335 TO CTI PCB CN332 PIN '1'TO'1') 2 PIN FLAT CABLE L=240MM #26 (1 SIDE SOCKET, 1 SIDE PLUG)	PC	o	0.00000	0.0000	0.000000
191-301005-10	'2' TO '2') 3 PIN SOCKET ASS'Y (2 WIRE) L=560MM	PC	o	1.00000	0.0399	0.039900
191-301005-10	FROM MAIN BOARD CN106 TO FRONT AV IN BOARD) 3 PIN SOCKET ASS'Y (2 WIRE) L=560MM	PC	0	0.00000	0.0399	0.000000
191-401005-10	PIN *1' TO F',*2' TO *G') 4 PIN SOCKET ASS'Y L=450MM	PC	0	1.00000	0.1508	0.150800
191-401240-10	FOR CRT 0 4 PIN FLAT CABLE 120MM #28 UL 20080 1 SIDE SOCK.1 SIDE PLUG	PC	o	1.00000	0.0000	0.000000
191-401240-10	FROM MAIN PCB CN334 TO CTI PCB CN330 PIN '1'TO'1",) 4 PIN FLAT CABLE 120MM #28 UL 20080 1 SIDE SOCK,1 SIDE PLUG	PC	0	0.00000	0.0000	0.000000
515-303408-10	<pre>'2'TO'2','3'TO'3','4'TO'4') SELF-TAPPING SCREW 3 X 6 W/B/T (HARDEN)</pre>	PC	0	4.00000	0.0028	0.011200
	FOR FRONT AV PCB					
	J GIFT BOX - TEAC (C) DESIGN (CT-M5930S)(W/C-TICK MARK)	PC	0	1.00000	0.0000	0.000000
663-230092-00) SERIAL NO.LABEL - TEAC DESIGN 2-ON L & R SIDES OF CTN,1-R/LABEL,1-WARRANTY CARD	PC	0	4.00000	0.0000	0.000000

Print Date : 15/05/00PRODUCT CODE : 625BT1-370002-TVPage Number : 6DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location	Unit Subs		Quantity Requi red	Unit Price	Amount
669-825801-18	RATING LABEL - TEAC (C) DESIGN (CT-M5930S) 240V	PC	0	1.00000	0.0000	0.000000
670-825800-32	I/MANUAL - TEAC (B) DESIGN (CT-M5930S) W/CLEAR FUN.40P.	PC	Ō	1.00000	0.0000	0.000000
678-183801-15	TOTAL CARE LABEL - TEAC (C) DESIGN	PC	0	1.00000	0.0000	0.000000
678-825801-14	SCREEN STICKER - TEAC (C) DESIGN (CT-M5930S)	PC	0	1.00000	0.0000	0.000000
690-942039-02	WARRANTY CARD -TEAC (C) DESIGN	PC	0	1.00000	0.1089	0.108900
693-825801-21	EAN CODE LABEL - TEAC (A) DESIGN (CT-M5930S) STUCK ON L & R SIDES OF EACH CTN	PC	0	2.00000	0.0000	0.000000
703-825811-05	SPK.GRILLE - SILVER (1008K) SPY 0.5MM THK Ø1.0 HOLE	PC	0	2.00000	0.0000	0.000000
710-932901-01	NAME PLATE - TEAC (B) DESIGN (BIG SIZE) (ELECTROFORMED) SUPPLIED BY VIDEO EPOCH	PC	0	1.00000	0.0000	0.000000
800-825805-00	POLYFAOM - TOP LEFT (W/O WOOFER AND W/WOOFER)	PC	Ö	1.00000	0.4413	0.441300
800-825806-00	POLYFOAM - TOP RIGHT (W/O WOOFER AND W/WOOFER)	PC	0	1.00000	0.4413	0.441300
800-825807-00	POLYFOAM - BOTTOM LEFT (W/O WOOFER AND W/WOOFER)	PC	0	1.00000	0.4935	0.493500
800-825808-00	POLYFOAM - BOTTOM RIGHT (W/O WOOFER AND W/WOOFER)	PC	O	1.00000	0.4935	0.493500
810-091504-13	POLYBAG 9" X 15" X 0.04MM W/ RE-CYCLING P.E.MARK FOR I/MANUAL	PC	O	1.00000	0.0000	0.000000
810-455304-60	POLYBAG 45"X53"X0.04MM (TEAC DESIGN CT-M596SR) FOR UNIT	PC	٥	1.00000	0.0000	0.000000
884-729A43-01	J/COVER-750 ANT,AV3 & S.VIDEO IN/AV OUT/SCART(MITSUBISH IZC)	PC	Õ	1.00000	0.0000	0.000000
889-829801-00	AV PCB COVER PLATE (UL) FOR FRONT AV BOARD	PC	0	1.00000	0.0180	0.018000
900-825601-13	FRONT CABINET (B) - SILVER (1008K) SPRAY	РC	0	1.00000	0.0000	0.000000
902-942531-U1	BACK CABINET - MATT BLACK (UL)	PC	0	1.00000	9.1529	9.152900
917-829803-06	FUN.LEN-TEAC (A) DESIGN(1008K) (CT-M5930S)W/CLEAR FUNCTION	PC	Ő	1.00000	0.2303	0.230300
977-829802-00	FUNCTION KNOB (FOR VOLUME CHANNEL FUNCTION)	PC	0	1.00000	0.0392	0.039200
977-829811-00	FUNCTION KNOB (FOR CHANNEL SETTING)	PC	Ö	1.00000	0.0238	0.023800
980-729A12-U0	JACK PLATE W/BRASS INSERL UL 940V	PC	0	1.00000	0.3445	0.344500
991-829801-03	POWER KNOB - SILVER (1008K) SPRAY	PC	O	1.00000	0.0170	0.017000

ASSB PRICE : 136.172860

Print Date : 15/05/00PRODUCT CODE : 825BT1-370002-TVPage Number : 7DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Required	Unit Price	Amount
*** ASSEMBLY :	: 180-8258T1-37-CP COM ASS'Y (PAL/BG/SC/NP/G.ST/CTI/F.AV IN					
001-234234-10	FLYBACK TRANSFORMER JF0101-0134A SHEKOU JEWEL # T402	PC	1	1.00000	7.8382	7.838200
012-102340-08	SEMI-FIXED RES. WI06-2AL-1K "SHENZHEN YUNGJIANG" VR901	PC	0	1.00000	0.0468	0.046600
101-160984-94	STANDBY SWITCHING TRANSFORMER KB16E984 "HIGHLIGHT" REJECTED	PC	o	1.00000	0.4065	0.406500
101-191009-96	HORIZONTAL DRIVE TRANSFORMER (R1009) T401	PC	٥	1.00000	0.1620	0.162000
101-268270-95	LINE FILTER L628T270 # L901,905	PC	2	2.00000	0.4413	0.882600
101-288280-95	LINE FILTER 50MH FOR 28" * L901.905	PC	2	0.00000	1.2581	0.000000
101-493260-94	* COOL, SOUL SWITCHING POWER TRANSFORMER KB493260 EC49 "ART-TECH" * T901	PC	15	1.00000	2.1677	2.167700
102-370600-08	TANK COIL / AFC COIL 707851 "DONGGUAN LIHANG" T101	29	0	1.00000	0.0000	0.000000
105-100103-16	FIXED INDUCTIVE COIL 100H 10% AL0305-100K "BOLUO DUIWANG"	PC	0	6.00000	0.0126	0.075600
105-109101-02	FIXED INDUTIVE COIL 1.0 wH 10% R252,253,W151,152	PC	0	4.00000	0.0213	0.085200
105-180103-08	FIXED INDUCTIVE COIL 18 UH +~10% 0410 "WITTIS" L106	PC	O	1.00000	0.0145	0.014500
105-201106-02	CHOKE COIL 200UH 10% CH9012- 201K (ELEC PRODUCT) L403,904.W255	PC	0	3.00000	0.1374	0.412200
105-500052-06	LINEARITY COI 50UH LX14I2428 "HIGHLIGHT"	PC	٥	1.00000	0.3019	0.301900
105-689103-16	FIXED INDUCTIVE COIL 6.80H 10% AL0305-6R8K "BOLUO DUIWANG"	PC	0	1.00000	0.0151	0.015100
105-821156-06	CHOKE COIL SZOUH 0.37 OHM HIGHLIGHT	PC	0	1.00000	0.2555	0.255500
106-210048-01	RELAY 487 VS48MB "TAKAMISAWA" RLY902	PC	0	1.00000	1.2000	1.200000
107-105500-66	SOUND TRAP CERAMIC FILTER 5.5MHZ WEI HAW	PC	0	1.00000	0.1200	0.120000
113-100105-17	CARBON FILM RESISTOR 10 OHM 1/4W +-5% R238,242	PC	o	2.00000	0.0016	0.003200
113-100505-75	METAL OXIDE FILM RESISTOR 10 OHM 3W +~5% R422,411	PC	٥	2.00000	0.0000	0.000000
113-101005-17	CARBON FILM RESISTOR 100 OHM 1/16W +-5% R123,141,173,174,180,194,196	PC	o	7.00000	0.0016	0.011200
113-101005-17	CARBON FILM RESISTOR 100 OHM 1/16W +-5%	PC	0	8.00000	0.0016	0.012800
113-101005-17	R201,202,207,236,237,239,240,247 CARBON FILM RESISTOR 100 OHM 1/16W +5% R501503,160	PC	0	4.00000	0.0016	0.006400
113-101005-17	CARBON FILM RESISTOR 100 OHM 1/16W +-5% R06-23,38,39	PC	o	20.00000	0.0016	0.032000
113-101305-75	METAL OXIDE FILM RESISTOR 100 OHM 1W +-5% R939	PC	0	1.00000	0.0000	0.000000

Print Date : 15/05/00 PRODUCT CODE : 825BT1-370002-TV

Page Number : 8 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I²C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Requir ed	Unit Price	Amount
113-102005-17	CARBON FILM RESISTOR 1K OHM 1/16W +-5% R101,140,148,152,161,166,197,198,208-211,114	PC	0	13.00000	0.0000	0.000000
113-102005-17	CARBON FILM RESISTOR 1K OHM 1/16W +-5% R245,249,250,267,268,402.510	PC	0	7.00000	0.0000	0.000000
113-102005-17	CARBON FILM RESISTOR 1K OHM 1/16W +-5% R243,244,139,270	PC	Ő	4.00000	0.0000	0.000000
113-102105-17	CARBON FILM RESISTOR 1K OHM 1/4W +-5% R973	PC	o	1.00000	0.0018	0.001800
113-102205-12	CARBON FILM RESISTOR 1K OHM 1/2W +-5% R505-507	PC	0	3.00000	0.0045	0.013500
113-102305-75	METAL OXIDE FILM RESISTOR 1K OHM 1W +-5% R410	PC	0	1.00000	0.0103	0.010300
113-103005-17	CARBON FILM RESISTOR 10K OHM 1/16W +-5% R113,121,182,187,189,251	PC	0	6.00000	0.0000	0.00000
113-103005-17	CARBON FILM RESISTOR 10K OHM 1/16W +-5% R185.05	PC	0	2.00000	0.0000	0.000000
113-103105-17	CARBON FILM RESISTOR 10K OHM 1/4W +-5% R905,514	PC	0	2.00000	0.0018	0.003600
113-104005-17	CARBON FILM RESISTOR 100K OHM 1/16W +-5% R142	PC	0	1.00000	0.0000	0.000000
113-104305-75	METAL OXIDE FILM RESISTOR 100K OHM 1W +-5% R918	PC	Ũ	1.00000	0.0000	0.000000
113-109105-17	CARBON FILM RESISTOR 1 OHM 1/4W +-5% R235	PC	Q	1.00000	0.0018	0.001800
113-109205-12	CARBON FILM RESISTOR 1 OHM 1/2W +-5% R407,408	PC	0	2.00000	0.0045	0.009000
113-120305-75	METAL OXIDE FILM RESISTOR 12 OHM 1W +-5% R909	PC	0	1.00000	0.0103	0.010300
113-120405-75	METAL OXIDE FILM RESISTOR 12 OHM 2W +-5% R917	PC	O	1.00000	0.0182	0.018200
113-120505-75	METAL OXIDE FILM RESISTOR 12 OHM 3W +-5% R423	PC	o	1.00000	0.0329	0.032900
113-121005-17	CARBON FILM RESISTOR 120 OHM 1/16W +-5% R153	PC	Ő	1.00000	0.0000	0.000000
113-122005-17	CARBON FILM RESISTOR 1.2K OHM 1/16W +-5% R269,285	PC	0	2.00000	0.0017	0.003400
113-122105-17	CARBON FILM RESISTOR 1.2K OHM 1/4W +-5% R976	PC	0	1.00000	0.0000	0.000000
113-123005-17	CARBON FILM RESISTOR 12K OHM 1/16W +-5% R203	PC	0	1.00000	0.0000	0.000000
113-123105-17	CARBON FILM RESISTOR 12K OHM 1/4W +-5% R974	PC	0	1.00000	0.0000	0.000000
113-124005-17	CARBON FILM RESISTOR 120K OHM 1/16W +-5% R127,413	PC	0	2.00000	0.0022	0.004400
113-129105-17	CARBON FILM RESISTOR 1.2 OHM 1/4W +-5% R248	PC	0	1.00000	0.0018	0.001600
113-151205-12	CARBON FILM RESISTOR 150 OHM 1/2W +-5% R936	PC	0	1.00000	0.0047	0.004700
113-152005-17	CARBON FILM RESISTOR 1.5K OHM 1/16W +-5% R171,405	PC	0	2.00000	0.0020	0.004000

Print Date : 15/05/00 PRODUCT CODE : 8258T1-370002-TV

Page Number : 9 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location		Subs	Quantity Required	Unit Price	Amount
	7 CARBON FILM RESISTOR 1.5K OHM 1/4W +-5% R516,517	PC	0	2.00000	0.0000	0.000000
113-152205-12	2 CARBON FILM RESISTOR 1K5 0HM 1/2W +-5% R508,429	PC	0	2.00000	0.0045	0.009000
113-153005-17	7 CARBON FILM RESISTOR 15K OHM 1/16W +-5% R134,401	PC	0	2.00000	0.0020	0.004000
113-153405-75	5 METAL OXIDE FILM RESISTOR 15K OHM 2W +-5% R418,970,971	PC	0	3.00000	0.0141	0.042300
	5 METAL OXIDE FILM RESISTOR 0.15 OHM 2W +-5% R912	PC	0	1.00000	0.0184	0.018400
	WIRE WOUND CEMENT RESISTOR 1.5 OHM 10W +-5% R924	PC	0	1.00000	0.0000	0.000000
	7 CARBON FILM RESISTOR 180 OHM 1/16W +-5% R150	PC	0	1.00000	0.0018	0.001800
	7 CARBON FILM RESISTOR 1.8K OHM 1/4W +-5% R904	PC	0	1.00000	0.0018	0.001800
	2 CARBON FILM RESISTOR 22 OHM 1/2W +-5% R417 5 METAL OXIDE FILM RESISTOR 22 OHM 3W +-5%	PC PC	0 Q	1.00000	0.0002	0.000000
	R426 7 CARBON FILM RESISTOR 220 OHM 1/16W +~5%	PC	ő	1.00000	0.0017	0.001700
	R179 7 CARBON FILM RESISTOR 2.2K OHM 1/16W +-5%	PC	õ	2.00000	0.0022	0.004400
	R186,419 7 CARBON FILM RESISTOR 2.2K OHM 1/4W +~5%	PC	0	1.00000	0.0000	0.000000
113-223005-17	R518 7 CARBON FILM RESISTOR 22K OHM 1/16W +-5%	PC	0	10.00000	0.0017	0.017000
113-223105-17	R103-105,107-112,420 7 CARBON FILM RESISTOR 22K OHM 1/4W +-5%	PC	o	1.00000	0.0015	0.001500
113-224005-17	R972 7 CARBON FILM RESISTOR 220K OHM 1/16W +-5%	PC	0	1.00000	0.0019	0.001900
113-229505-75	R102 5 METAL OXIDE FILM RESISTOR 2.2 OHM 3W +-5%	PC	0	1.00000	0.0000	0.000000
113-229605-51	R509 WIRE WOUND CEMENT RESISTOR 2.2 OHM 5W +-5%	PC	o	1.00000	0.0000	0.000000
113-243105-17	R944 7 CARBON FILM RESISTOR 24K OHM 1/4W +-5% R979	PC	0	1.00000	0.0016	0.001600
113-270405-75	6 METAL OXIDE FILM RESISTOR 27 OHM 2W +-5% R910.01	PC	o	2.00000	0.0141	0.028200
113-270505-75	5 METAL OXIDE FILM RESISTOR 27 OHM 3W +-5% R980	PC	0	1.00000	0.0000	0.000000
113-271005-17	7 CARBON FILM RESISTOR 270 OHM 1/16 W +-5% R241,414	PC	0	2.00000	0.0020	0.004000
113-272005-17	7 CARBON FILM RESISTOR 2.7K OHM 1/16W +-5% R126	PC	0	1.00000	0.0019	0.001900
113-272205-12	2 CARBON FILM RESISTOR 2.7K OHM 1/2W +~5% R415	PC	Ü	1.00000	0.0037	0.003700
113-273005-17	7 CARBON FILM RESISTOR 27K OHM 1/16W +-5% R119,258,135	PC	0	3.00000	0.0022	0.006600

Print Date : 15/05/00 PRODUCT CODE : 8256T1-370002-TV

ı

Page Number : 10 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I²C)220P.

Part	Description / Location	Unit	Subs	Quantity Required	Unit Price	Amount
	CARBON FILM RESISTOR 330 OHM 1/16W +-5% R156,157,271,261-263,155	PC	0	7.00000	0.0017	0.011900
113-331105-17	CARBON FILM RESISTOR 330 OHM 1/4W +-5% R901,938	PC	0	2.00000	0.0016	0.003200
113-331505-75	METAL OXIDE FILM RESISTOR 330 OHM 3W +-5%	PC	0	1.00000	0.0467	0.046700
113-332005-17	CARBON FILM RESISTOR 3.3K OHM 1/16W +-5% R129-131,136,204,205,403	PC	0	7.00000	0.0017	0.011900
113-332102-17	CARBON FILM RESISTOR 3.3K OHM 1/4W +-2% R907	PC	0	1.00000	0.0020	0.002000
113-332905-58	WIRE WOUND CEMENT RESISTOR 3K3 OHM 10W +-5% H=39MM TAIWAN OH	M PC	0	1.00000	0.1742	0.174200
113-333005-17	CARBON FILM RESISTOR 33K OHM 1/16W +5% R183,184	PC	0	2.00000	0.0020	0.004000
113-334105-17	CARBON FILM RESISTOR 330K OHM 1/4W +-5% R961	PC	0	1.00000	0.0000	0.000000
113-334305-75	METAL OXIDE FILM RESISTOR 330K OHM 1W +-5% R911	PC	0	1.00000	0.0103	0.010300
113-335105-17	CARBON FILM RESISTOR 3.3M OHM 1/4W +-5% R977	PC	0	1.00000	0.0024	0.002400
113-339105-17	CARBON FILM RESISTOR 3.3 OHM 1/4W +- 5% R976	PC	0	1.00000	0.0000	0.000000
113-390605-75	METAL OXIDE FILM RESISTOR 39 OHM 5W +5% R913	PC	0	1.00000	0.0791	0.079100
113-391005-17	CARBON FILM RESISTOR 390 OHM 1/16W +-5% R147	PC	0	1.00000	0.0021	0.002100
113-392005-17	CARBON FILM RESISTOR 3.9K OHM 1/16W +-5% R115,128	PC	0	2.00000	0.0020	0.004000
113-393005-17	CARBON FILM RESISTOR 39K OHM 1/16W +-5% R143,190	PC	0	2.00000	0.0020	0.004000
113-470005-17	CARBON FILM RESISTOR 47 OHM 1/16W +-5% R149,W128	PC	۵	2.00000	0.0018	0.003600
	CARBON FILM RESISTOR 47 OHM 1/2W +-5% R504	PC	0	1.00000	0.0051	0.005100
113-471005-17	CARBON FILM RESISTOR 470 OHM 1/16W +-5% R412,163,164.165	PC	0	4.00000	0.0018	0.007200
113-471105-17	CARBON FILM RESISTOR 470 OHM 1/4W +~5% R519,520	PC	0	2.00000	0.0020	0.004000
113-471305-75	METAL OXIDE FILM RESISTOR 470 OHM 1W +-5% R404	PC	0	1.00000	0.0108	0.010800
113-472005-17	CARBON FILM RESISTOR 4.7K OHM 1/16W +-5% R132,133,176,177,178,192,193,199,200,206	PC	0	10.00000	0.0020	0.020000
113-472005-17	CARBON FILM RESISTOR 4.7K OHM 1/16W +-5% R226,228,256,257	PC	0	4.00000	0.0020	0.008000
113-472005-17	CARBON FILM RESISTOR 4.7K OHM 1/16W +-5% R265,266,02,03,254,255	PC	0	6.00000	0.0020	0.012000
113-472105-17	CARBON FILM RESISTOR 4.7K OHM 1/4W +-5% R908	PC	0	1.00000	0.0016	0.001600
113-473005-17	CARBON FILM RESISTOR 47K OHM 1/16W +-5% R270,25,26,28,29,31,32,34,35	PC	0	9.00000	0.0020	0.018000

Print Date : 15/05/00 PRODUCT CODE : 8258T1-370002-TV

Page Number : 11 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location		Subs	Quantity Requi red	Price	Amount
113-479605-75	METAL OXIDE FILM RESISTOR 4.7 OHM 5W +-5% R427	PC	0	1.00000	0.0000	0.000000
113-560005-17	CARBON FILM RESISTOR 56 OHM 1/16W +-5% R151	PC	0	1.00000	0.0020	0.002000
113-562005-17	CARBON FILM RESISTOR 5.6K OHM 1/16W +-5% R146	PC	0	1.00000	0.0017	0.001700
113-565210-99	CARBON COMPOSITION RESISTOR 5.6M OHM 1/2W +-10% FOR SPEAKER TO SPEAKER GRILLE	PC	0	2.00000	0.0687	0.137400
113-565210-99	CARBON COMPOSITION RESISTOR 5.6M OHM 1/2W +-10% # R948,921	PC	3	2.00000	0.0687	0.137400
113-680405-75	METAL OXIDE RESISTOR 68 OHM 2W +-5% R122	PC	0	1.00000	0.0148	0.014800
113-681005-17	CARBON FILM RESISTOR 680 OHM 1/16W +-5% R116	PC	0	1.00000	0.0022	0.002200
113 -68 1505-75	METAL OXIDE FILM RESISTOR 680 OHM 3W +-5%(QING YUA TAI HE) R523	PC	0	1.00000	0.0000	0.000000
113-682005-17	CARBON FILM RESISTOR 6.8K OHM 1/16W +-5% R124	PC	0	1.00000	0.0017	0.001700
113-682102-17	CARBON FILM RESISTOR 6.8K OHM 1/4W +-2% R902	PC	0	1.00000	0.0025	0.002500
113-682105-17	CARBON FILM RESISTOR 6.8K OHM 1/4W +-5% R906	PC	0	1.00000	0.0016	0.001600
113-683005-17	CARBON FILM RESISTOR 68K OHM 1/16W +-5% R117	PC	0	1.00000	0.0020	0.002000
113-684005-17	CARBON FILM RESISTOR 680K OHM 1/16W +5% R409	PC	0	1.00000	0.0051	0.005100
113-688305-42	FUSING RESISTOR 0.68 OHM 1W +-5% # R421,915	PC	4	2.00000	0.0276	0.055200
113-688305-42	FUSING RESISTOR 0.68 OHM 1W +-5% R406	PC	0	1.00000	0.0276	0.027600
113-688305-49	FUSING RESISTOR 0.68 OHM 1W +-5% "KOA" # R421,915	PC	4	0.00000	0.0358	0.000000
113-688405-42	FUSEBLE RESISTOR 0.68 2W +-5% R914,937	PC	0	2.00000	0.0414	0.082800
113-688405-42	FUSEBLE RESISTOR 0.68 2W +-5% # R424,425.426	PC	16	3.00000	0.0414	0.124200
113-750005-17	CARBON FILM RESISTOR 75 OHM 1/16W +-5% R167-169,24,27,30,33,36,37,172	PC	0	10.00000	0.0022	0.022000
113-820105-17	CARBON FILM RESISTOR 82 OHM 1/4W +-5% R975	PC	0	1.00000	0.0000	0.000000
113-821005-17	CARBON FILM RESISTOR 820 OHM 1/16W +-5% R195	PC	0	1.00000	0.0018	0.001800
113-822005-17	CARBON FILM RESISTOR 8.2K OHM 1/16W +-5% R125	PC	0	1.00000	0.0022	0.002200
113-822105-17	CARBON FILM RESISTOR 8.2K OHM 1/4W +-5% R903	PC	0	1.00000	0.0018	0.001800
113-823005-17	CARBON FILM RESISTOR 82K OHM 1/16W +-5% R120	PC	0	1.00000	0.0017	0.001700
113-824005-17	CARBON FILM RESISTOR 820K OHM 1/16W +-5% R118	PC	0	1.00000	0.0018	0.001800

Print Date : 15/05/00 Page Number : 12 PRODUCT CODE : 8258T1-370002-TV

2 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part		Unit	Subs	Quantity Required	Unit Price	Amount
	CARBON FILM RESISTOR 8.2 OHM 1/4W +-5% R259,260	PC	0	2.00000	0.0000	0.000000
114-210262-00	THERMISTOR PTH451C2628 # TH901	PC	5	0.00000	0.7742	0.000000
114-210270-02	THERMISTOR 18 OHM 270V #2322 662 96524 "PHILIPS" # TH901	PC	5	0.00000	0.6774	0.000000
114-210270-12	THERMISTOR 18 OHM 276V #2322 662 96724 "PHILIPS" # TH901	PC	5	1.00000	0.5129	0.512900
114-210290-00	THERMISTOR 18 OHM +-20% #PTH451C2348G180M290A "MURATA" # TH901	PC	5	0.00000	0.4839	0.000000
123-101350-60	CERAMIC CAP. 100 PF 50V +-10% (SL TYPE) "SMART GOOD" C102,196-198	PC	0	4.00000	0.0063	0.033200
123-102350-90	CERAMIC CAP. 0.001 MFD 50V +-10% (B TYPE) C101,117,120,125,149,417	PC	0	6.00000	0.0085	0.051000
123-102850-10	CERAMIC CAP. 0.001 MFD 2KV +-10% MATSUSHITA C504	PC	0	1.00000	0.0503	0.050300
123-103370-90	CERAMIC CAP. 0.01 MFD 50V +80 -20% C126,188,189,405,06,18,19,27,28,29,30	PC	0	11.00000	0.0081	0.089100
123-104270-90	CERAMIC CAP. 0.1 MFD 25V +80 -20% C139,141,151-153,202,205,225	PC	0	8.00000	0.0295	0.236000
123-104270-90	CERAMIC CAP. 0.1 MFD 25V +80 -20% C232,432,145,236,146	PC	0	5.00000	0.0295	0.147500
123-12255 0-9 5	CERAMIC CAP. 1200PF 500V +-10% "YINAN DON'S" C418	PC	0	1.00000	0.0149	0.014900
123-150340-93	CERAMIC CAP. 15 PF 50V +~5% (NPO) C160,161,138	PC	0	3.00000	0.0091	0.027300
123-151350-60	CERAMIC CAP 150 PF 50V +-10% (SL TYPE) C204	PC	0	1.00000	0.0077	0.007700
123-152850-10	CERAMIC CAP. 0.0015 MFD 2KV +-10% MATSUSHITA C414,434	PC	0	2.00000	0.1045	0.209000
123-180340-93	CERAMIC CAP. 18 PF 50V +-5% (NPO) C137	PC	0	1.00000	0.0091	0.009100
123-220340-60	CERAMIC CAP. 22 PF 50V +-5% (SL TYPE) C203.206	PC	0	2.00000	0.0083	0.016600
123-220340-93	CERAMIC CAP. 22 PF 50V +-5% (NPO) C164,165	PC	0	2.00000	0.0077	0.015400
123-222350-90	CERAMIC CAP. 0.0022 MFD 50V +-10% (B TYPE) C119,124,133,144,168	PC	0	5.00000	0.0077	0.038500
123-222466-47	CERAMIC CAP. 0.0022 MFD 400VAC +-20% W/IEC384-14 APP. "TDK" # C917	PC	6	0.00000	0.1394	0.000000
123-222466-50	<pre>CERAMIC CAP. 0.0022 MFD 400VAC +-20% ECKDNA222ME "MATSUSHITA" # C917</pre>	" PC	6	1.00000	0.0968	0.096800
123-222466-51	CERAMIC CAP. 0.0022 MFD 400V +-20% W/IEC 384-14 APP. MURATA # C917	PC	6	0.00000	0.0871	0.000000
123-222850-10	CERAMIC CAP. 0.0022 MFD 2KV +-10% MATSUSHITA	PC	0	1.00000	0.0774	0.077400
123-223370-90	CERAMIC CAP. 0.022 MFD 50V +60 ~20% C121,147,159,163,221,229,02,974	PC	o	8.00000	0.0096	0.076800
123-270340-60	CERAMIC CAP. 27 PF 50V +-5% (SL-TYPE) C171-173,226	PC	0	4.00000	0.0077	0.030800

Print Date : 15/05/00PRODUCT CODE : 825BT1-370002-TVPage Number : 13DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Part	Description / Location		Subs	Quantity Required	Unit Price	Amount
	CERAMIC CAP. 270 PF 50V +-10% (SL TYPE) C123	PC	0	1.00000	0.0101	0.010100
123-272850-10	CERAMIC CAP. 0.0027 2KV C503,914	PC	0	2.00000	0.1626	0.325200
12 3-360340 -93	CERAMIC CAP. 36 PF 50V +-5% (NPO) C406,407	PC	0	2.00000	0.0095	0.019000
123-470340-93	CERAMIC CAP. 47 PF 50V +-5% (NPO) C170	PC	0	1.00000	0.0118	0.011800
123-471350-60	CERAMIC CAP. 470 PF 50V +-10% (SL TYPE) C183-186,191,192	PC	0	6.00000	0.0145	0.087000
123-472550-90	CERAMIC CAP. 0.0047 MFD 500V +-10% (B TYPE) C501	PC	0	1.00000	0.0871	0.087100
123-472552-90	CERAMIC CAP. 0.0047 MFD 500V +-10% (B TYPE) SMALL SIZE C904,903,906,928,929	PC	0	5.00000	0.0445	0.222500
123-472552-95	CERAMIC CAP. 0.0047 MFD 500V +-10% (B TYPE) "YINAN DON'S" C424-426	PC	0	3.00000	0.0211	0.063300
123-820340-60	CERAMIC CAP. 82 PF 50V +-5% (SL TYPE) C154	PC	0	1.00000	0.0097	0.009700
123-821850-10	CERAMIC CAP. 820 PF 2KV +-10% (SL TYPE) MATSUSHITA C913	PC	0	1.00000	0.0290	0.029000
126-102071-01	MYLAR CAP. 0.001 MFD 50V +-10% C401	PC	0	1.00000	0.0072	0.007200
126-103071-01	MYLAR CAP. 0.01 MFD 50V +-10% C210,211,412	PC	٥	3.00000	0.0078	0.023400
126-103230-45	METALIZED POLY.CAP. 0.01 MFD 2KV +-10% "XIAMEN FALA" C415	PC	0	1.00000	0.2791	0.279100
126-104060-21	METALIZED POLYESTER FILM CAP. 0.1 MFD 63V +-5% C135,217,402,411,429,911,112,208,209,201	PC	0	10.00000	0.0406	0.406000
126-104101-35	POLYPROPYLENE CAP. 0.1 MFD 100V +-10% "XIAMEN FALA" C122	PC	٥	1.00000	0.0630	0.063000
126-153071-01	MYLAR CAP. 0.015 MFD 50V +-10% C973	PC	0	1.00000	0.0087	0.008700
	POLYPROPYLENE CAP. 0.015 MFD 400V +-5% "XIAMEN FALA" C409	PC	0	1.00000	0.0000	0.000000
126-154071-01	MYLAR CAP. 0.15 MFD 50V +-10% C131	PC	0	1.00000	0.0226	0.022600
126-223071-01	MYLAR CAP. 0.022 MFD 50V +-10% C214,215.413	PC	0	3.00000	0.0093	0.027900
126-223401-35	POLYPROPYLENE CAP. 0.022 MFD 400V +-10% "XIAMEN FALA" C416	PC	0	1.00000	0.0486	0.048600
126-332071-01	MYLAR CAP. 0.0033 MFD 50V +~10 % C115.136	PC	0	2.00000	0.0072	0.014400
126-333071-01	MYLAR CAP. 0.033 MFD 50V +-10% C907,155	PC	0	2.00000	0.0093	0.018600
126-334071-01	MYLAR CAP. 0.33 MFD 50V +-10% W130,131	PC	0	2.00000	0.0341	0.068200
126-364211-31	POLYPROPYLENE CAP. 0.36 MFD 250V +-10% C408	PC	0	1.00000	0.1703	0.170300
126-472071-01	MYLAR CAP. 0.0047 MFD 50V +-10% C128.130	PC	0	2.00000	0.0078	0.015600

-.

1

2

ż

Print Date : 15/05/00 F

PRODUCT CODE : 8258T1-370002-TV

Page Number : 14 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I²C)220P.

Part	Description / Location		Subs	Quantity Requir ed	Unit Price	Amount
	MYLAR CAP. 0.047 MFD 50V +-10% C148	PC	0	1.00000	0.0106	0.010800
126-473201-35	POLYPROPYLENE CAP. 0.047 MFD 200V +-10% "XIAMEN FALA" C419	PC	0	1.00000	0.0000	0.000000
126-473222-41	METALIZED POLYPROPYLENE CAP. 0.047 MFD 275V +-20% "OKAYA" # C970.980	PC	7	2.00000	0.0794	0.158800
126-473222-45	METALIZED POLY.CAP. 0.047 MFD 275VAC +-20% "XIAMEN FALA" # C970,980	PC	7	0.00000	0.0774	0.000000
126-474060-25	METALIZED POLYESTER FILM CAP. 0.47 MFD 63V +-5% XIAMEN FALA C104-106,182,195,207,187,04,05,07-17,20,23,21	PC	0	23.00000	0.0756	1.738800
126-474222-45	METALIZED POLY.CAP. 0.47 MFD 275VAC +-20% "XIAMEN FALA" # C901	PC	8	1.00000	0.2226	0.222600
126-474222-45	METALIZED POLY.CAP. 0.47 MFD 275VAC +-20% "XIAMEN FALA" # C901	PC	8	0.00000	0.2226	0.000000
127-105072-06	ELECT CAP. 1 MFD 50V +-20% {TAPING TYPE} C107-109,129,157,200,230,166,227,421	PC	0	10.00000	0.0091	0.091000
127-105132-07	ELECT CAP. 1 MFD 160V +-20% "NICHICON" Q976	PC	0	1.00000	0.0465	0.046500
127-106042-06	ELECT CAP. 10 MFD 16V +-20% {TAPING TYPE} C140,142,156,158,162,169,233	PC	0	7.00000	0.0112	0.078400
127-106072-03	ELECT. CAP. 10 MFD 50V +-20% C116,509	PC	0	2.00000	0.0112	0.022400
127-106104-03	ELECT CAP. 10 MFD 100V +-20% 105°C C908	PC	0	1.00000	0.0210	0.021000
127-106252-08	ELECT CAP. 10 MFD 250V +-20% "JAMICON" C502	PC	0	1.00000	0.0533	0.053300
127-106402-0H	ELECT CAP. 10 MFD 400V +-20% "SHENZHEN JINGUANG" C971	PC	0	1.00000	0.0000	0.000000
127-107042-03	ELECT. CAP. 100 MFD 16V +-20% C111,118,132,134,190,193,194.431	PC	0	8.00000	0.0235	0.188000
127-107062-08	ELECT CAP. 100 MFD 35V +-20% "JAMICON" C213	PC	0	1.00000	0.0252	0.025200
	ELECT. CAP. 100 MFD 160V +-20% "NICHICON" C420,926	PC	0	2.00000	0.3290	0.658000
127-108052-03	ELECT. CAP. 1000 MFD 25V +-20% C430,927	PC	0	2.00000	0.0877	0.175400
127-225072-06	ELECT CAP. 2.2 MFD 50V +-20% {TAPING TYPE} C114,143,212,223,224	PC	0	5.00000	0.0112	0.056000
127-226042-06	ELECT CAP. 22 MFD 16V +-20% {TAPING TYPE} C127	PC	0	1.00000	0.0112	0.011200
127-226252-08	ELECT CAP. 22 MFD 250V +-20% "JAMICON" C433	PC	٥	1.00000	0.1018	0.101800
127-227042-03	ELECT. CAP. 220 MFD 16V +-20% C222,231,422,423,435,01	PC	0	6.00000	0.0328	0.196800
127-227052-06	ELECT CAP. 220 MFD 25V +-20% {TAPING TYPE} C975	PC	0	1.00000	0.0252	0.025200
127-227062-08	ELECT CAP. 220 MFD 35V +-20% "JAMICON" C403,427,507	PC	0	3.00000	0.0386	0.115800
127-227422-07	ELECT CAP. 220 MFD 420V +-20% "NICHICON" C905	PC	0	1.00000	1.3161	1.316100

Print Date : 15/05/00

PRODUCT CODE : 8258T1-370002-TV

Page Number : 15 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I²C)220P.

Component Part	Description / Location			Quantity Required	Price	Amount
127-228052-03	ELECT. CAP. 2200 MFD 25V +-20% C216	PC	0	1.00000	0.2435	
127-228052-00	ELECT CAP. 2200 MFD 25V +-20% Ø15X25MM "NAM TUNG" C930	PC	0	1.00000	0.1661	0.166100
12 7-33 7072-03	ELECT. CAP. 330 MFD 50V +-20% C508	PC	0	1.00000	0.1020	0.102000
127-475072-06	ELECT CAP. 4.7 MFD 50V +-20% {TAPING TYPE} C404,428	PC	0	2.00000	0.0112	0.022400
127-475102-26	ELECT CAP. BIPOLAR 4.7 MFD 100V +-20% {TAPING TYPE} C410	PC	0	1.00000	0.0386	0.038600
127-475132-03	ELECT CAP 4.7 MFD 160V +-20% C972	PC	0	1.00000	0.0307	0.030700
127-476042-03	ELECT. CAP. 47 MFD 16V +-20% C110,220,228	PC	0	3.00000	0.0141	0.042300
127-476062-03	ELECT CAP. 47 MFD 35V +-20% C506	PC	0	1.00000	0.0406	0.040600
127-476094-03	ELECT CAP. 47 MFD 63V +-20% 105°C C910	PC	0	1.00000	0.0441	0.044100
127-477052-03	ELECT. CAP. 470 MFD 25V +-20% C218,219	PC	0	2.00000	0.0734	0.146800
130-134004-00	RECTIFIER DIODE IN4004 D971,972,973,974	PC	0	4.00000	0.0116	0.046400
130-134148-01	SILICON DIODE IN4148 D101-104,106-111,114-116,195,507-510,512	PC	0	19.00000	0.0070	0.133000
130-240809-50	VERIABLE CAPACITANCE DIODE BB809 D112-113	PC	0	2.00000	0.1078	0.215600
130-310021-00	RECTIFIER DIODE EGIZ SANKEN D970,975,976	PC	0	3.00000	0.1130	0.339000
130-310228-50	DAMPER DIODE BY228 "PHILIPS" D402	PC	0	1.00000	0.1432	0.143200
130-310345-00	RECTIFIER DIODE 3JH45 TOSHIBA 3.0A 600V D401,906	PC	0	2.00000	0.2261	0.452200
130-310406-00	BRIDGE RECTIFIER RBV-406 SANKEN BR901	PC	0	1.00000	0.5671	0.567100
130-314002-00	RECTIFIER DIODE 1N4002 100V/1A D501~503	PC	0	3.00000	0.0089	0.026700
130-315295-00	RECTIFIER DIODE \$52956 TOSHIBA D403-407,901,902,905,909.910	PC	0	10.00000	0.0910	0.910000
130-410036-00	ZENER DIODE 3.6V 1/2W ZD103	PC	0	1.00000	0.0218	0.021800
130-410039-01	ZENER DIODE 3.9V ZD901	PC	0	1.00000	0.0157	0.015700
130-410056-01	ZENER DIODE 5.6V	PC	0	1.00000	0.0159	0.015900
130-410068-01	ZENER DIODE 6.8V 1/2W +-5% ZD503	PC	0	1.00000	0.0159	0.015900
130-410082-01	ZENER DIODE 8.2V ZD102.903	PC	0	2.00000	0.0157	0.031400
130-410120-01	ZENER DIODE 12V 1/2W +5% "TEMIC" ZD504	PC	0	1.00000	0.0157	0.015700

· Print Date : 15/05/00

PRODUCT CODE : 825BT1-370002-TV

Page Number : 16 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Part	Description / Location		Unit	Subs	Quantity Required	Unit Price	Amount
	ZENER DIODE UPC 574J NEC ZD401		PC	0	1.00000	0.1357	0.135700
130-411091-01	ZENER DIODE 9.1V ZD403,904,01		PC	0	3.00000	0.0159	0.047700
130-513144-00	LED LAMPS 3MM RED (ROUND) #03144PR "GLORY" LED601,602 (ON SENSOR PCB)		PC	0	2.00000	0.0174	0.034800
131-210719-29	TRANSISTOR 2SA719R/S MATSUSHITA Q971		PC	Ö	1.00000	0.0542	0.054200
131-211013-15	TRANSISTOR 2SA1013(0) TOSHIBA Q914		PC	0	1.00000	0.1206	0.120600
131-211015-00	TRANSISTOR 2SA1015 TOSHIBA Q102-105,110,111,113,502.504		PC	0	9.00000	0.0234	0.210600
	TRANSISTOR 2SB774/Q/R/S MATSUSHITA Q911		PC	0	1.00000	0.1258	0.125800
	TRANSISTOR 2SB940P Q401		PC	0	1.00000	0.4479	0.447900
	TRANSISTOR 2SC1815 TOSHIBA Q106,108,109,910,912,117,119,402,503		PC	0	9.00000	0.0234	0.210600
	TRANSISTOR 2SC2335 L/K NEC 0970		PC	Ö	1.00000	0.8903	0.890300
	TRANSISTOR 25C3619 Q404		PC	0	1.00000	0.1897	0.189700
	TRANSISTOR 2504706 SHIN HO Q909		PC PC	0	1.00000	1.7739 0.2903	0.580600
	TRANSISTOR 2SD1761(E) ROHM Q913,405 TRANSISTOR 2SD2500 TOSHIBA		PC	0	2.00000	1.1004	1.100400
	Q403 TRANSISTOR PH2369 PHILIPS		PC	0	1.00000	0.0573	0.057300
	Q101 I.C. TA1219AN I2C AV SELECTOR "TOSHIBA"		PC	0	1.00000	2.2007	2.200700
	ICOI I.C. TEA1501 PHILIPS		PC	ŏ	1.00000	0.0000	0.000000
	IC970 I.C. M37221EASP MITSUBISHI (0.T.P.)		PC	ő	1.00000	7.2353	7.235300
	IC102 IC TDA3857 PHILIPS		PC	õ	1.00000	1.9143	1.914300
	IC109 I.C. TDA8354Q/N1 PHILIPS		PC	Ö	1.00000	1.3868	1.386800
	IC401 I.C. PCF8598C-2 PHILIPS		PC	0	1.00000	1.0989	1.096900
133-109670-33	IC103 I.C. TDA9870A DIGITAL TV SOUND PROCESSOR (DTVSP) W/O NI	ICAM	PC	0	1.00000	6.0294	6.029400
133-116107-33	IC107 I.C. TDA6107Q/N2 (IMPROVEMENT) PHILIPS		PC	0	1.00000	0.9798	0.979800
133-202615-33	IC501 IC TDA2615 (PHILIPS)		PC	o	1.00000	1.1154	1.115400
133-304241-31	IC108 I.C. M74HCT241B1 SGS IC104		PC	o	1.00000	0.2638	0.263800

Print Date : 15/05/00 PRODUCT CODE : 825871-370002-TV

Page Number : 17 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I²C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Requir ed	Unit Price	Amount
133-507808-61	I.C. KA7808 SAMSUNG IC402	PC	0	1.00000	0.1585	0.158500
133-517805-61	I.C. KA7805 SAMSUNG IC403.404	PC	٥	2.00000	0.1585	0.317000
136-504251-00	REMOTE CONTROL RECEIVER SPS-425-1G SANYO OPT601 (ON SENSOR PCB)	PC	0	1.00000	0.7548	0.754800
137-245760-30	CRYSTAL 24.576MHZ X105	PC	0	1.00000	0.2323	0.232300
137-357954-20	CRYSTAL 3.579545 MHx "KOWHA"	PC	0	1.00000	0.3097	0.309700
137-443361-25	CRYSTAL 4.433619 MHZ 20PF "BAOTOU" X101	PC	0	1.00000	0.0000	0.000000
137-800000-20	CRYSTAL 8.0 MHZ KITRONICS	PC	0	1.00000	0.2710	0.271000
146-100001-14	POWER SWITCH (ESB-99957S COST COST REDUCTION)	PC	9	0.00000	1.0452	0.000000
146-100006-14	POWER SWITCH PS5E-B "CHINA LANDMARK"	PC	Э	1.00000	0.6302	0.630200
146-104105-00	TACT SWITCH KPT-1105S L=8.35MM "UNITRONIC" S104-107	PC	0	4.00000	0.0333	0.133200
146-104305-00	TACT SWITCH KPT1105AP-1 "KIE" S608-610 (ON FUNCTION PCB)	PC	0	3.00000	0.0387	0.116100
160-101001-08	PIN CONNECTOR 1 PIN PLUG STRAIGHT CN501,901,902	PC	0	3.00000	0.0135	0.040500
160-102254-27	WAFER 2 PINS S11-2W-R (ANGLE TYPE) S.H.S CN02	PC	0	1.00000	0.0120	0.012000
160-102255-27	PIN CONNECTOR 2 PINS PLUG STRAIGHT (UL) (S.H.S) CN107,108,111	PC	0	3.00000	0.0075	0.022500
160-102805-08	PIN CONNECTOR 2 PIN PLUG STRAIGHT	PC	0	1.00000	0.0271	0.027100
160-103255-27	PIN CONNECTOR 3 PINS PLUG CN103,105,106.110	PC	0	4.00000	0.0113	0.045200
160-103805-08	PIN CONNECTOR 3 PIN PLUG STRAIGHT CN403,402	PC	0	2.00000	0.0406	0.081200
160-104254-27	PIN CONNECTOR 4 PINS PLUG (ANGLE TYPE) 1903	PC	0	1.00000	0.0240	0.024000
160-104255-27	PIN CONNECTOR 4 PINS PLUG (SHS) CN113,115,404	PC	0	3.00000	0.0151	0.045300
160-104805-08	PIN CONNECTOR 4 PIN PLUG STRAIGHT CN401	PC	0	1.00000	0.0515	0.051500
160-105255-27	PIN CONNECTOR 5 PINS WAFER 2.5 PITCH CN104,114	PC	0	2.00000	0.0189	0.037800
160-106255-27	PIN CONNECTOR 6 PINS WAFER (SHS) S11-W CN101	PC	0	1.00000	0.0226	0.022600
160-108255-27	PIN CONNECTOR 8 PINS PLUG J904.CN109	PC	0	2.00000	0.0302	0.060400
160-109254-27	PIN CONNECTOR 9 PINS PLUG (ANGLE TYPE) CN01	PC	0	1.00000	0.0459	0.045900
160-109255-27	PIN CONNECTOR 9 PINS PLUG CN112	PC	0	1.00000	0.0340	0.034000

Print Date : 15/05/00 8

PRODUCT CODE : 8258T1-370002-TV

Page Number : 18 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location		Subs	Quantity Required	Unit Price	Amount
161-301302-21	DIN SOCKET "CONIC" J13	PC	0	1.00000	0.0000	
161-472003-04	RCA JACK 2 PIN YELLOW AV-8.4-2 "SHENZHEN LUNGGUANG" J10,14.07	PC	0	3.00000	0.0000	0.000000
161-473202-01	RCA JACK 2 PIN AV-8.4-2 BLACK "SHENZHEN LONGGANG" J08,11,16	PC	0	3.00000	0.0000	0.000000
161-473204-00	RCA JACK 3 PIN UIC-032-04AR RED "UNITRONIC" J09,J12,J15	PC	0	3.00000	0.0000	0.000000
161-481105-32	RF CONNECTOR UIC-0421-01-010A CHINA LANDMARK FOR ANT INPUT	PC	٥	1.00000	0.5032	0.503200
161-540004-01	CRT SOCKET ISH-01 IN CHANG # SK501	PC	10	1.00000	0.5226	0.522600
161-682102-22	21 PIN SCART SOCKET J901	PC	0	1.00000	0.2555	0.255500
172-620004-40	UL1007 TOP COAT WIRE AWG20 40MM BLACK 5 X 5 MM FROM CN106 GND TO R257 GND	PC	0	1.00000	0.0029	0.002900
172-620005-40	UL 1007 TOP COAT WIRE AWG 20 50MM BLACK 5 X 5MM FOR SHIELD CAN TO TUNER	PC	0	1.00000	0.0031	0.003100
172-620016-40	UL 1007 TOP COAT WIRE AWG 20 160MM BLACK 10 X 10 MM FROM 161-481105-32 TO AV PCB W15 GND	PC	0	1.00000	0.0068	0.008800
172-620036-40	UL 1007 TOP COAT WIRE AWG 20 360MM BLACK 10 X 10MM FOR TUNER TO FLAT BRIDED WIRE	PC	0	1.00000	0.0213	0.021300
172-626008-40	UL 1007 TOP COAT WIRE AWG26 80MM BLACK 10 X 10 MM Q909 LUG TO POWER PCB 'Z',Q403 LUG TO MAIN PCB 'K'	PC	0	2.00000	0.0022	0.004400
172-626020-40	UL 1007 TOP COAT WIRE AWG 26 200MM FOR SPEAKER TO SPEAKER GRILLE	PC	0	2.00000	0.0049	0.009800
172-726000-99	BARE WIRE 54MM W03-16,094,101-111,113-119,121-125,127,129,	M	0	10.22000	0.0012	0.012264
172-726000-99	BARE WIRE 54MM W132-150,153-170,172,176-207,211-235,237-247,	М	0	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM W252-254,256-265,501-504,R04,154,430,431,138,C26	М	0	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM (W901-902 ON SCART PCB)	М	0	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM W21,22,23,(W901,906,907,909 ON POWER PCB)	М	0	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM W209,210,279,290,291,292,(W601 ON SENSOR PCB)	М	0	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM W287A,288A,289A,268,281,297	М	Õ	0.00000	0.0012	0.000000
172-726000-99	BARE WIRE 54MM R511,512,515,D511,ZD502	M	0	0.00000	0.0012	0.000000
172-830120-99	FLAT BRIDED WIRE CRT GROUND	M	0	2.60000	0.0112	0.029120
179-001010-00	OIL SLEEVING 1 mm DIA. 20MM FOR D906,10MM-C907	М	0	0.03000	0.0774	0.002322
179-105000-00	UL PVC TUBE 5mm DIA FOR CN901,902	М	0	0.20000	0.1877	0.037540
179-105000-00	UL PVC TUBE 5mm DIA 500MM FOR LEFT SPK.,700MM FOR RIGHT SPK.	М	0	1.20000	0.1877	0.225240

Print Date : 15/05/00 PRODUCT CODE : 825871-370002-TV

ι.

Page Number : 19 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

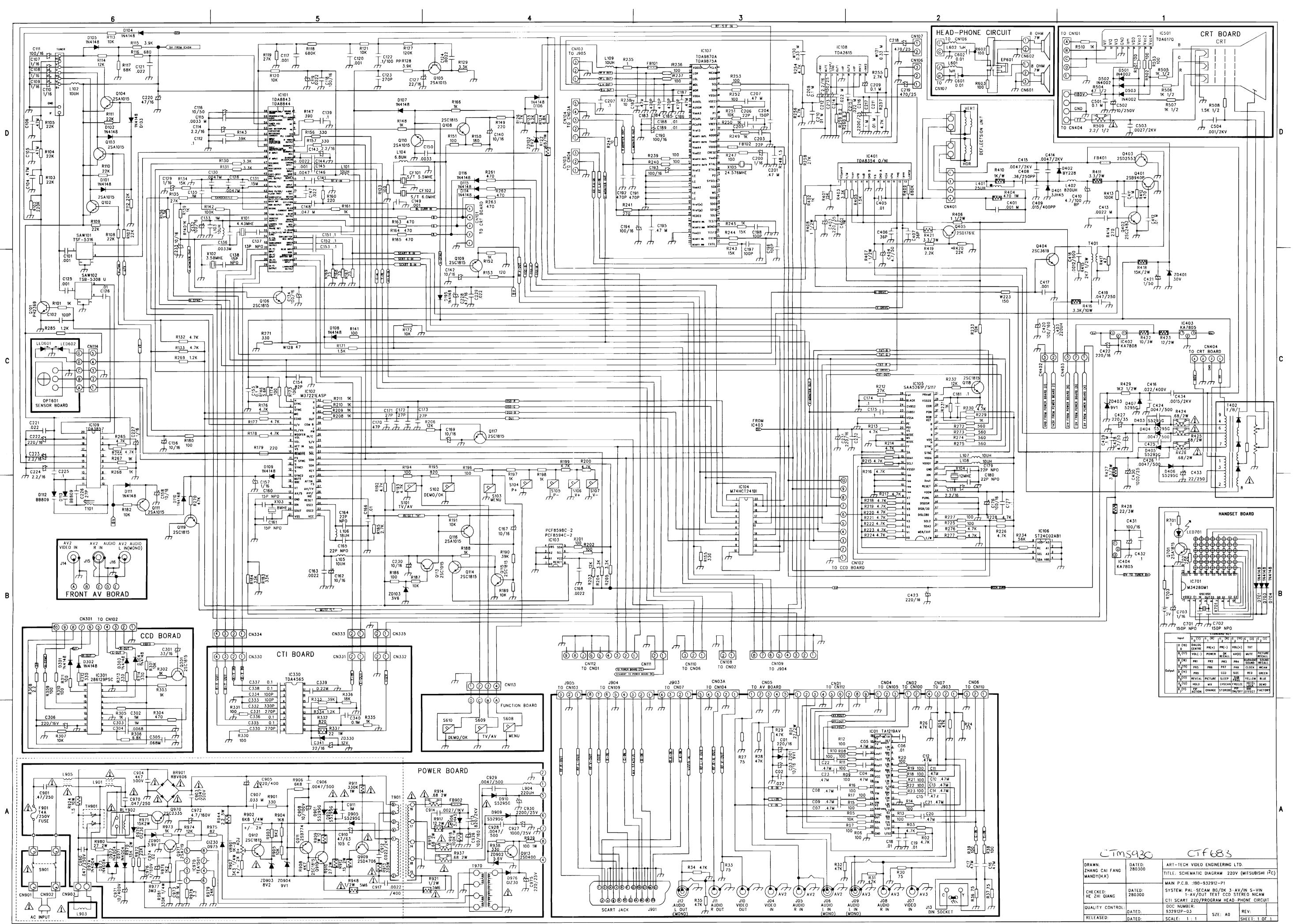
Component Part	Description / Location	Unit	Subs	Quantity Requi red	Unit Price	Amount.
179-107300-00	UL PVC TUBE 7.3MM DIA. 220MM FOR DOUBLE INSOLATION WIRE	PC	0	0.22000	0.0643	0.014146
179-110500-00	UL PVC TUBE 11MM DIA. 50MM FOR AC LINE CORD	м	0	0.05000	0.5535	0.027675
179-403030-00	3MM DIA. SHRINKABLE TUBE 70MM FOR AC LINE CORD	PC	٥	0.07000	0.2768	0.019376
179-403030-00	3MM DIA. SHRINKABLE TUBE 80MM FOR SPEAKER TO SPEAKER GRILLE	PC	٥.	0.08000	0.2768	0.022144
182-224000-03	FUSE T4A 250V # F901	PC	11	1.00000	0.0782	0.078200
182-224000-23	FUSE T4A/250V 5 X 20 MM TIME- LAG #50T040H "UNITRONIC" # F901	PC	11	0.00000	0.1006	0.00000
	FUSE 4A/250V 5 X 20MM SLO-BLO #218004 LITTELFUSE # F901	PC	11	0.00000	0.0929	0.000000
184-350805-08	AXIAL LEAD BEAD INDUCTORS "COILS" FB101,102,401,402,901	PC	0	5.00000	0.0112	0.056000
190-382904-P0	CRT PCB (27042000)	PC	O	1.00000	0.2942	0.294200
190-829800-07	SENSOR P.C.B.(261199)	PC	0	1.00000	0.0368	0.036800
190-829802-04	FUNCTION P.C.B.(301096)	PC	0	1.00000	0.0484	0.048400
190-629603-06	21 PIN SOCKET P.C.B.(180999)	PC	Ö	1.00000	0.0000	0.000000
190-88200A-XE	POWER SWITCH P.C.B. (270300)	PC	0	1.00000	0.0465	0.046500
190-93290807	POWER P.C.B. (14042000)	PC	0	1.00000	0.9000	0.900000
190-932912-P1	MAIN P.C.B. (19042000)	PC	0	1.00000	2.0981	2.098100
190-932913-P8	AV P.C.B.(210100)	PC	O	1.00000	0.0000	0.000000
191-101007-10	1 PIN SOCKET ASS'Y L≕350MM (DOUBLE INSOLATION) BLACK FOR CN501 TO CRT GND	PC	0	1.00000	0.0517	0.051700
191-101012-10	1 PIN DOUBLE INSOLATION WIRE AWG 18 L=400MM BLUE # FROM POWER SWITCH TO CN901 ON POWER PCB	PC	12	1.00000	0.1135	0.113500
191-101013-10	1 PIN DOUBLE INSOLATION WIRE AWG 18 L=400MM BROWN # FROM POWER SWITCH TO CN902 ON POWER PCB	PC	13	1.00000	0.1135	0.113500
191-201234-10	2 PIN SOFT WIRE L=350MM(1 SIDE SOCKET,1 SIDE PLUG) FLAT CABLE CN111 TO POWER BOARD PIN '1' TO '8','2' TO '7'	PC	0	1.00000	0.0968	0.096800
	2 PIN L≈340MM #26 UL1185 (W∕SINGLE SHIELD WIRE) CN108 TO CN02	PC	0	1.00000	0.0000	0.000000
	3 PIN SOCKET ASS'Y L=480MM CN403 TO POWER BOARD PIN *1' TO *4',*2' TO *5'	PC	0	1.00000	0.2204	0.220400
	3 PIN SOCKET ASS'Y L== 480MM *3' TO *6'	PC	0	0.00000	0.2204	0.00000
	3 PIN L≍350MM #22 UL1672 (2 WIRE) STV8-3H CN402 TO POWER BOARD PIN '2' TO '1','3' TO '2'	PC	0	1.00000	0.0000	0.000000
191-301271-10	3 PIN FLAT CABLE L=500MM AWG26 UL2468 (SOFT WIRE 1 SIDE PLUG) CN103 TO J905,CN105 TO CN04	PC	0	2.00000	0.0000	0.000000
191-301272-10	3 PIN FLAT CABLE L=340MM AWG26 UL2468 (SOFT WIRE 1 SIDE PLUG) CN110 TO CN06	PC	0	1.00000	0.0000	0.000000
	4 PIN SOCKET ASS'Y L=450MM (FLAT CABLE) UL2468 #26 CN404 TO CRT BOARD PIN '1' TO 'FF','2' TO 'GND',	PC	0	1.00000	0.1500	0.150000
	4 PIN SOCKET ASS'Y L≈450MM (FLAT CABLE) UL2468 #26 `3' TO `GND',`4' TO `180V'	PC	0	0.00000	0.1500	0.000000
191-401041-10	4 PIN FLAT CABLE L=250MM CN113 TO FUNCTION PCB '1' TO 'D','2' TO 'C',	PC	0	1.00000	0.1200	0.120000

Print Date : 15/05/00 PRODUCT CODE : 8258T1-370002-TV

Page Number : 20 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I*C)220P.

Component Part	Description / Location	Unit	Subs	Quantity Required	Unit Price	Amount
	4 PIN FLAT CABLE L=250MM 53' TO 58'.54' TO 58'	PC	0	0.00000	0.1200	0.000000
191-401232-10	4 PIN L=220MM AWG26 UL1185 W/ TRIPLE SHIELD WIRE,1 SIDE PLUG CN07 TO J903	PC	0	1.00000	0.0000	0.000000
191-501026-10	5 PIN SOCKET ASS'Y L=480MM (FLAT CABLE) CN104 TO CN03A	PC	0	1.00000	0.2003	0.200300
191-501040-10	5 PIN FLAT CABLE L=250MM AWG26 UL2468 (SOFT WIRE) CN114 TO SENSOR BOARD PIN `1' TO `A',`2' TO `B',	PC	0	1.00000	0.0000	0.000000
	5 PIN FLAT CABLE L≖250MM AWG26 UL2468 (SOFT WIRE) *3' TO 'C','4' TO 'D','5' TO 'F'	PC	0	0.00000	0.0000	0.000000
	5 P FLAT CABLE #26 UL2468 MALE 400MM,FEMALE 360MM 2 SIDE PLUG CNO5 TO FRONT AV BOARD PIN '1' TO 'A','2' TO 'B',		0	1.00000	0.0000	0.000000
	5 P FLAT CABLE #26 UL2468 MALE 400MM, FEMALE 360MM 2 SIDE PLUG '3' TO 'C', '4' TO 'D', '5' TO 'E'		0	0.00000	0.0000	0.000000
	6 PIN SOCKET ASS'Y L=450MM (W/FLAT CABLE) CN101 PIN \$1'TO\$A', \$2'TO\$H', \$3'TO\$C', \$4'TO\$D',	PC PC	0	1.00000	0.1755	0.175500
	6 PIN SOCKET ASS'Y L=450MM (W/FLAT CABLE) '5'TO'E','6'TO'F' 8 PIN L=400MM #26 UL2468 (P1-4 ,6,7 FLAT CABLE,P5,8 S.S.WIRE)		0	1.00000	0.1755	0.000000
	CN109 TO J904 9 PIN 340MM #26 UL2468 P1-3 FL AT CABLE,P4-5,6-7,8-9 S.S.WIRE		õ	1.00000	0.0000	0.000000
	CN112 TO CN01 COAXIAL CABLE W/DIN, RCA 250MM W/3 SOLDERING POINT "MIKI"	PC	õ	1.00000	0.3774	0.377400
	FOR TUNER TO RF CONNECTOR MACHINE SCREW 3 X 6 B/M (WHITE)	PC	0	3.00000	0.0011	0.003300
515-303406-10	1-IC404,1-IC501,1-IC108 SELF-TAPPING SCREW 3 X 6 W/B/T (HARDEN)	PC	0	2.00000	0.0025	0.005000
515-303408-10	FOR 161-682102-22 SELF-TAPPING SCREW 3 X 8 W/B/T (HARDEN)	PC	0	11.00000	0.0028	0.030800
517-303312-10	6-AV IN/OUT PCB,2-IC401,1-IC402,1-IC403,1-Q403 SELF-TAPPING SCREW 3 X 12 W/A W/H=7MM (HARDEN)	PC	o	2.00000	0.0027	0.005400
	1 FOR BR901,1 FOR Q909 EYELET 2 X 3 MM	PC	0	19.00000	0.0009	0.017100
	4-L901,4-L905,2-T402,2-L401,2-R416,2-C408, EYELET 2 X 3 MM 1-Q403 °C ² ,2-L402	PC	0	0.00000	0.0009	0.000000
580-101004-04	TWIST LOCK SUPPORTS "KANGLI" FOR CN403	PC	٥	1.00000	0.0108	0.010800
580-101261-01	CABLE TIE L=100MM 2-PW.SW.PCB,1-SPK.CN106,107,1-CN403	PC	0	4.00000	0.0024	0.009600
580-101261-01	CABLE TIE L=100MM	PC	0	15.00000	0.0024	0.036000
580-101261-01	CABLE TIE L=100MM	PC	0	3.00000	0.0024	0.007200
580-102261-00	CABLE TIE L=200MM W=2.5MM FOR DEGAUSSING COIL MTG.	PC	0	2.00000	0.0090	0.018000
580-103261-00	CABLE TIE L=300MM W=3.5MM FOR DEGAUSSING COIL MTG.	PC	0	6.00000	0.0193	0.115800
661-932501-01	FUSE LABEL - ATAKI DESIGN (T4A/250V)	PC	O	1.00000	0.0038	0.003800
74488130100	SPRING FOR C.R.T. MOUNTING 5.2 X 42 X 0.6MM	PC	0	2.00000	0.0259	0.051800
746-063101-01	AC LINE CORD PIN FOR POWER SWITCH PCB	PC	0	4.00000	0.0109	0.043600

Print Date : 15/05/00 PRODUCT CODE : 825BT1-370002-TV


Page Number : 21 DESCRIPTION : PAL/BG/SC/NP/CTI/G.ST/F.AV IN/BACK AV/I,0/E.PH/SV (I2C)220P.

Component [Part	Description / Location	Unit	Subs	Quantity Requir ed	Unit Price	Amount
750-063101-00 9	SOLDERING LUG LEG:8X4MM	PC	0	2.00000	0.0033	0.006600
ř	FOR Q403, Q909					
750-063102-01 3	35MM SOLDERING LUG OD:7 ID:3.2 LEG:4X35MM	PC	0	6.00000	0.0082	0.049200
ř	FOR AC LINE CORD, SPK., CONNECTOR					
766-686801-00 F	USE HOLDER	PC	Ø	2.00000	0.0126	0.025200
F	-901					
779-882001-01 1	(RON HEAT SINK (D)	PC	0	1.00000	0.0353	0.035300
F	FOR IC404					
779-882803-01 1	IRON HEAT SINK	PC	0	2.00000	0.1045	0.209000
F	FOR IC108,501					
781-932501-03 A	ALUMINIUM HEAT SINK (POWER)	PC	0	1.00000	0.6929	0.692900
F	FOR Q909,BR901					
781-932803-06 A	ALUMINIUM HEAT SINK - (MODIFY BY 781-932803-03)	PC	0	1.00000	0.0000	0.000000
F	FOR IC401,402,403,Q403					
783-931304-02 \$	SHIELD CAN	PC	0	1.00000	0.1888	0.188800
783-931305-06 5	SHIELD CAN COVER "NEW"	PC	0	1.00000	0.1045	0.104500
889-729A02-U0 A	AC PCB PVC COVER (UL)	PC	0	1.00000	0.0000	0.000000
F	FOR AV PCB					

ASSB PRICE : 68.564827

TOTAL PRICE : 208.3525

NO PRICE ITEM : 85 *** END OF REPORT ***

CTM	5930	CTF683						
DRAWN:	DATED:	ART-TECH VIDEO I	ENGINEERING LT	D.				
ZHANG CAI FANG MANDY(H.K)	280300	TITLE: SCHEMATIC DIAGRAM 220V (MITSUBISHI I ² C)						
CHECKED: HE ZHI QIANG	DATED: 280300	SYSTEM: PAL-SECAM BG/DK 3-AV/IN S-VIN 1-AV/OUT TEXT CCD STERED NICAM CTI SCART 220/PROGRAM HEAD-PHONE CIRCUIT						
QUALITY CONTROL:	DATED:	DOC NUMBER: 932912P-03	SZE: AO	REV:				
RELEASED:	DATED:	SCALE: 1:1	SZE: AU	SHEET: 1 OF 1				